

Computational Linguistics (INF2820 — Beyond CFGs)

Stephan Oepen

Universitetet i Oslo & CSLI Stanford

oe@ifi.uio.no

The CKY (Cocke, Kasami, & Younger) Algorithm

for
$$(0 \leq i < |input|)$$
 do
 $chart_{[i,i+1]} \leftarrow \{\alpha \mid \alpha \rightarrow input_i \in P\};$
for $(1 \leq l < |input|)$ do
for $(0 \leq i < |input| - l)$ do
for $(1 \leq j \leq l)$ do
if $(\alpha \rightarrow \beta_1 \beta_2 \in P \land \beta_1 \in chart_{[i,i+j]} \land \beta_2 \in chart_{[i+j,i+l+1]})$ then
 $chart_{[i,i+l+1]} \leftarrow chart_{[i,i+l+1]} \cup \{\alpha\};$

Kim adored snow in Oslo	1	2	3	4	5
$\left(\begin{array}{c} [0,2] \leftarrow [0,1] + [1,2] \end{array} \right) \qquad 0 \\ \left(\begin{array}{c} 0 \end{array} \right) = 0 \\ 0 \end{array} \right)$	NP		S		S
		V	VP		VP
$\begin{bmatrix} [0,5] \leftarrow [0,1] + [1,5] \\ [0,5] \leftarrow [0,2] + [2,5] \end{bmatrix} $ 2	Ĩ		NP		NP
$[0,5] \leftarrow [0,3] + [3,5]$ 3				Ρ	PP
$\underbrace{[0,5] \leftarrow [0,4] + [4,5]}{4}$					NP

Natural Language Understanding (2)

INF2820 — 5-MAR-09 (oe@ifi.uio.no) -

Chart Parsing — Specialized Dynamic Programming

Basic Notions

- Use *chart* to record partial analyses, indexing them by string positions;
- count inter-word vertices; CKY: chart row is *start*, column *end* vertex;
- treat multiple ways of deriving the same category for some substring as *equivalent*; pursue only once when combining with other constituents.

Key Benefits

- Dynamic programming (memoization): avoid recomputation of results;
- efficient indexing of constituents: no search by start or end positions;
- compute *parse forest* with exponential 'extension' in *polynomial* time.

Limitations of the CKY Algorithm

Built-In Assumptions

- Chomsky Normal Form grammars: $\alpha \to \beta_1 \beta_2$ or $\alpha \to \gamma$ ($\beta_i \in C$, $\gamma \in \Sigma$);
- breadth-first (aka exhaustive): always compute all values for each cell;
- rigid control structure: bottom-up, left-to-right (one diagonal at a time).

Generalized Chart Parsing

- Liberate order of computation: no assumptions about earlier results;
- active edges encode partial rule instantiations, 'waiting' for additional (adjacent and passive) constituents to complete: [1, 2, VP → V • NP];
- parser can fill in chart cells in any order and guarantee completeness.

INF2820 — 5-MAR-09 (oe@ifi.uio.no)

Generalized Chart Parsing

- The parse *chart* is a two-dimensional matrix of *edges* (aka chart items);
- an edge is a (possibly partial) rule instantiation over a substring of input;
- the chart indexes edges by start and end string position (aka vertices);
- dot in rule RHS indicates degree of completion: $\alpha \rightarrow \beta_1 \dots \beta_{i-1} \bullet \beta_i \dots \beta_n$
- active edges (aka incomplete items) partial RHS: $[1, 2, VP \rightarrow V \bullet NP]$;
- *passive* edges (aka *complete* items) full RHS: $[1, 3, VP \rightarrow V NP \bullet]$;

The Fundamental Rule $[i, j, \alpha \rightarrow \beta_1 \dots \beta_{i-1} \bullet \beta_i \dots \beta_n] + [j, k, \beta_i \rightarrow \gamma^+ \bullet]$ $\mapsto [i, k, \alpha \rightarrow \beta_1 \dots \beta_i \bullet \beta_{i+1} \dots \beta_n]$

An Example of a (Near-)Complete Chart

	1	2	3	4	5
0	$ \begin{array}{c} NP \rightarrow NP \bullet PP \\ S \rightarrow NP \bullet VP \\ NP \rightarrow kim \bullet \end{array} $				$S \to NPVP\bullet$
1		$\begin{array}{c} VP \rightarrow V \bullet NP \\ V \rightarrow adored \bullet \end{array}$	$VP \rightarrow VP \bullet PP \\ VP \rightarrow VNP \bullet$		$VP \rightarrow VP \bullet PP \\ VP \rightarrow VP PP \bullet \\ VP \rightarrow V PP \bullet$
2			$\begin{array}{c} NP \rightarrow NP \bullet PP \\ NP \rightarrow snow \bullet \end{array}$		$\begin{array}{c} NP \rightarrow NP \bullet PP \\ NP \rightarrow NP PP \bullet \end{array}$
3				$\begin{array}{c} PP \rightarrow P \bullet NP \\ P \rightarrow in \bullet \end{array}$	$PP \rightarrow PNP ullet$
4					$NP \rightarrow NP \bullet PP \\ NP \rightarrow oslo \bullet$

 $_{0}$ Kim $_{1}$ adored $_{2}$ snow $_{3}$ in $_{4}$ Oslo $_{5}$

Natural Language Understanding (6)

(Even) More Active Edges

	0	1	2	3	
0	$\begin{array}{c} S \rightarrow \bullet NP VP \\ NP \rightarrow \bullet NP PP \\ NP \rightarrow \bullet kim \end{array}$	$\begin{array}{c} S \rightarrow NP \bullet VP \\ NP \rightarrow NP \bullet PP \\ NP \rightarrow kim \bullet \end{array}$		$S \to NPVP\bullet$	
1		$\begin{array}{c} VP \rightarrow \bullet VP PP \\ VP \rightarrow \bullet V NP \\ V \rightarrow \bullet \text{ adored} \end{array}$	$VP \rightarrow V \bullet NP \\ V \rightarrow adored \bullet$	$VP \rightarrow VP \bullet PP \\ VP \rightarrow V NP \bullet$	
2			$\begin{array}{c} NP \to \bullet NP PP \\ NP \to \bullet snow \end{array}$	$\begin{array}{c} NP \rightarrow NP \bullet PP \\ NP \rightarrow snow \bullet \end{array}$	
3					

- Include all grammar rules as *epsilon* edges in each $chart_{[i,i]}$ cell.
- after initialization, apply *fundamental rule* until fixpoint is reached.

Our ToDo List: Keeping Track of Remaining Work

The Abstract Goal

• Any chart parsing algorithm needs to check all pairs of adjacent edges.

A Naïve Strategy

- Keep iterating through the complete chart, combining all possible pairs, until no additional edges can be derived (i.e. the fixpoint is reached);
- frequent attempts to combine pairs multiple times: deriving 'duplicates'.

An Agenda-Driven Strategy

- Combine each pair exactly once, viz. when both elements are available;
- maintain agenda of new edges, yet to be checked against chart edges;
- new edges go into agenda first, add to chart upon retrieval from agenda.

Recap: Grammatical Categories

Number — Person — Case — Gender

That dog barks. — Those dogs bark. I bark. — You bark. — They bark. — Sam shaved himself. We bark. — You bark. — Those dogs bark. I saw her. — She saw me. — My dog barked.

Tense — Aspect — Mood

The dog barks. — The dog barked — The dog will bark. The dog has barked. — The dog is barking. If I were a carpenter, ...

INF2820 — 5-MAR-09 (oe@ifi.uio.no)

Limitations of (Our) Context-Free Grammars

Agreement and Valency (For Example)
That dog barks.
*That dogs barks.
*Those dogs barks.
The dog chased a cat.
*The dog barked a cat.
*The dog chased.
*The dog chased a cat my neighbours.
The cat was chased by a dog.
*The cat was chased of a dog.

Natural Language Understanding (10)

. . .

INF2820 - 5-MAR-09 (oe@ifi.uio.no) -

Agreement and Valency in Context-Free Grammars

INF2820 — 5-MAR-09 (oe@ifi.uio.no)

Natural Language Understanding (11)

A Really Complicated Language

[...] omdat ik Henk de nijlpaarden zag voeren

- INF2820 - 5-MAR-09 (oe@ifi.uio.no)

Natural Language Understanding (12)

A Really Complicated Language

[...] omdat ik Jan Henk de nijlpaarden zag helpen voeren .

— INF2820 — 5-MAR-09 (oe@ifi.uio.no)

More Terminology: Grammatical Functions

Licensing — Government — Agreement

The dog barks. — *The dog a cat barks — *The dog barks a cat. Kim depends on Sandy — *Kim depends in Sandy The class meets on Thursday in 3B at 12:15.

- **Constituent** node in analysis tree (terminal or instantiation of rule);
- Head licenses additional constituents and can govern their form;
- **Specifier** precedes head, singleton, nominative case, agreement;
- **Complement** post-head, licensed and governed, order constraints;
- Adjunct 'free' modifier, optional, may iterate, designated position;
- **Government** directed: a property of c_1 determines the form of c_2 ;
- Agreement bi-directional: co-occurrence of properties on c_1 and c_2 .

