

Computational Linguistics (INF2820 - Beyond CFGs)

$$
\text { phrase }^{\left[\begin{array}{ll}
\text { HEAD } & 1 \\
\operatorname{SPR} & \langle \rangle \\
\operatorname{COMPS} & 3
\end{array}\right] \rightarrow \quad \begin{array}{l}
2 \\
\text { phrase }
\end{array}\left[\begin{array}{ll}
\operatorname{SPR} & \langle \rangle \\
\operatorname{COMPS} & \langle \rangle
\end{array}\right], \quad \underset{\text { phrase }}{ }\left[\begin{array}{ll}
\operatorname{HEAD} & 1 \\
\operatorname{SPR} & \langle 2 \\
\operatorname{COMPS} & 3
\end{array}\right]}
$$

Stephan Oepen

Universitetet i Oslo \& CSLI Stanford
oe@ifi.uio.no

The CKY (Cocke, Kasami, \& Younger) Algorithm

```
for ( \(0 \leq i<\mid\) input \(\mid\) ) do
    chart \(_{[i, i+1]} \leftarrow\left\{\alpha \mid \alpha \rightarrow\right.\) input \(\left._{i} \in P\right\} ;\)
for ( \(1 \leq l<\mid\) input \(\mid\) ) do
    for \((0 \leq i<\mid\) input \(\mid-l)\) do
    for \((1 \leq j \leq l)\) do
if \(\left(\alpha \rightarrow \beta_{1} \beta_{2} \in P \wedge \beta_{1} \in \operatorname{chart}_{[i, i+j]} \wedge \beta_{2} \in \operatorname{chart}_{[i+j, i+l+1]}\right)\) then
                \(\operatorname{chart}_{[i, i+l+1]} \leftarrow \operatorname{chart}_{[i, i+l+1]} \cup\{\alpha\} ;\)
```

Kim adored snow in Oslo

$$
\begin{gathered}
{[0,2] \leftarrow[0,1]+[1,2]} \\
\cdots \\
{[0,5] \leftarrow[0,1]+[1,5]} \\
{[0,5] \leftarrow[0,2]+[2,5]} \\
{[0,5] \leftarrow[0,3]+[3,5]} \\
{[0,5] \leftarrow[0,4]+[4,5]}
\end{gathered}
$$

1		2	3	4	5
0	NP		S		S
1		V	VP		VP
2			NP		NP
3				P	PP
4					NP

Chart Parsing — Specialized Dynamic Programming

Basic Notions

- Use chart to record partial analyses, indexing them by string positions;
- count inter-word vertices; CKY: chart row is start, column end vertex;
- treat multiple ways of deriving the same category for some substring as equivalent; pursue only once when combining with other constituents.

Key Benefits

- Dynamic programming (memoization): avoid recomputation of results;
- efficient indexing of constituents: no search by start or end positions;
- compute parse forest with exponential 'extension' in polynomial time.

Limitations of the CKY Algorithm

Built-In Assumptions

- Chomsky Normal Form grammars: $\alpha \rightarrow \beta_{1} \beta_{2}$ or $\alpha \rightarrow \gamma\left(\beta_{i} \in C, \gamma \in \Sigma\right)$;
- breadth-first (aka exhaustive): always compute all values for each cell;
- rigid control structure: bottom-up, left-to-right (one diagonal at a time).

Generalized Chart Parsing

- Liberate order of computation: no assumptions about earlier results;
- active edges encode partial rule instantiations, 'waiting' for additional (adjacent and passive) constituents to complete: $[1,2, \mathrm{VP} \rightarrow \mathrm{V} \bullet \mathrm{NP}]$;
- parser can fill in chart cells in any order and guarantee completeness.

Natural Language Understanding (4)

Generalized Chart Parsing

- The parse chart is a two-dimensional matrix of edges (aka chart items);
- an edge is a (possibly partial) rule instantiation over a substring of input;
- the chart indexes edges by start and end string position (aka vertices);
- dot in rule RHS indicates degree of completion: $\alpha \rightarrow \beta_{1} \ldots \beta_{i-1} \bullet \beta_{i} \ldots \beta_{n}$
- active edges (aka incomplete items) — partial RHS: [1,2, VP $\rightarrow \mathrm{V} \bullet \mathrm{NP}]$;
- passive edges (aka complete items) — full RHS: [1, 3, VP \rightarrow V NP•];

The Fundamental Rule

$$
\begin{aligned}
{[i, j, \alpha} & \left.\rightarrow \beta_{1} \ldots \beta_{i-1} \bullet \beta_{i} \ldots \beta_{n}\right]+\left[j, k, \beta_{i} \rightarrow \gamma^{+} \bullet\right] \\
& \mapsto\left[i, k, \alpha \rightarrow \beta_{1} \ldots \beta_{i} \bullet \beta_{i+1} \ldots \beta_{n}\right]
\end{aligned}
$$

\qquad

An Example of a (Near-)Complete Chart

1		2	3	4	5
0	$\begin{aligned} & \mathrm{NP} \rightarrow \mathrm{NP} \bullet \mathrm{PP} \\ & \mathrm{~S} \rightarrow \mathrm{NP} \bullet \mathrm{VP} \\ & \mathrm{NP} \rightarrow \mathrm{kim} \bullet \end{aligned}$				S \rightarrow NP VP •
1		$\mathrm{VP} \rightarrow \mathrm{V} \bullet \mathrm{NP}$ $\mathrm{V} \rightarrow$ adored \bullet	$\begin{aligned} & \mathrm{VP} \rightarrow \mathrm{VP} \bullet \mathrm{PP} \\ & \mathrm{VP} \rightarrow \mathrm{VNP} \end{aligned}$		$\begin{aligned} & \mathrm{VP} \rightarrow \mathrm{VP} \cdot \mathrm{PP} \\ & \mathrm{VP} \rightarrow \mathrm{VP} P \mathrm{PP} \\ & \mathrm{VP} \rightarrow \mathrm{VPP} \end{aligned}$
2			$\begin{aligned} & \mathrm{NP} \rightarrow \mathrm{NP} \bullet \mathrm{PP} \\ & \mathrm{NP} \rightarrow \text { snow } \bullet \end{aligned}$		$N P \rightarrow N P \bullet P P$ $N P \rightarrow$ NP PP •
3				$\underset{\mathrm{P} \rightarrow \mathrm{in} \bullet}{ } \rightarrow \mathrm{P} \bullet \mathrm{NP}$	$\mathrm{PP} \rightarrow \mathrm{PNP}$ •
4					$\begin{gathered} \mathrm{NP} \rightarrow \mathrm{NP} \bullet \mathrm{PP} \\ \mathrm{NP} \rightarrow \mathrm{oslo} \bullet \end{gathered}$

${ }_{0}$ Kim $_{1}$ adored $_{2}$ snow $_{3}$ in $_{4}$ Oslo $_{5}$

Natural Language Understanding (6)

(Even) More Active Edges

- Include all grammar rules as epsilon edges in each chart ${ }_{[i, i]}$ cell.
- after initialization, apply fundamental rule until fixpoint is reached.

Our ToDo List: Keeping Track of Remaining Work

The Abstract Goal

- Any chart parsing algorithm needs to check all pairs of adjacent edges.

A Naïve Strategy

- Keep iterating through the complete chart, combining all possible pairs, until no additional edges can be derived (i.e. the fixpoint is reached);
- frequent attempts to combine pairs multiple times: deriving 'duplicates'.

An Agenda-Driven Strategy

- Combine each pair exactly once, viz. when both elements are available;
- maintain agenda of new edges, yet to be checked against chart edges;
- new edges go into agenda first, add to chart upon retrieval from agenda.
\qquad
Natural Language Understanding (8)

Recap: Grammatical Categories

Number - Person - Case - Gender
That dog barks. - Those dogs bark.
I bark. - You bark. - They bark. - Sam shaved himself.
We bark. - You bark. - Those dogs bark.
I saw her. - She saw me. - My dog barked.

Tense - Aspect - Mood

The dog barks. - The dog barked - The dog will bark.
The dog has barked. - The dog is barking. If I were a carpenter, ...

Limitations of (Our) Context-Free Grammars

Agreement and Valency (For Example)

That dog barks.
*That dogs barks.
*Those dogs barks.
The dog chased a cat.
*The dog barked a cat.
*The dog chased.
*The dog chased a cat my neighbours.
The cat was chased by a dog.
*The cat was chased of a dog.

Agreement and Valency in Context-Free Grammars

A Really Complicated Language

[...] omdat ik Henk de nijlpaarden zag voeren

A Really Complicated Language

[...] omdat ik Jan Henk de nijlpaarden zag helpen voeren

More Terminology: Grammatical Functions

Licensing - Government - Agreement

The dog barks. - *The dog a cat barks — *The dog barks a cat.
Kim depends on Sandy - *Kim depends in Sandy The class meets on Thursday in 3B at 12:15.

- Constituent node in analysis tree (terminal or instantiation of rule);
- Head licenses additional constituents and can govern their form;
- Specifier precedes head, singleton, nominative case, agreement;
- Complement post-head, licensed and governed, order constraints;
- Adjunct 'free' modifier, optional, may iterate, designated position;
- Government directed: a property of c_{1} determines the form of c_{2};
- Agreement bi-directional: co-occurence of properties on c_{1} and c_{2}.

