
Algorithms for AI and NLP (Fall 2008)
— Final Exam —

General Instructions

• Please read through the complete exam once before starting to answer questions. About thirty minutes
into the exam, the instructor will come around to answer questions of clarification.

• Please follow the instructions closely. Most of the questions ask for short answers. When a maximum
length is given (e.g. ‘in no more than two sentences’), please try to stick to those limits.

• As discussed in class, the exam is given in English, but you are free to answer in any of Bokm̊al, English,
or Nynorsk.

1 Finite-State Technology and General Search (100 Points)

(a) Draw a finite-state automaton (FSA) that recognises the language an, where n is a number greater or
equal to zero and divisible by three or four. Thus, the automaton should recognize strings like aaa, aaaa,
aaaaaa, aaaaaaaa, etc.

(b) Recall the distinction between deterministic and non-deterministic FSAs. What does it mean for an FSA
to be non-deterministic? Is your solution to part (a) above deterministic or not? In a few sentences,
sketch the procedure for converting a non-deterministic FSA into a deterministic one. In the general
case, what is the maximum number of states in the new, deterministic automaton, assuming the original
non-deterministic FSA had n states?

(c) In the light of our discussion of FSAs, though not necessarily limiting yourself to the finite-state universe,
what is a common characteristic of computations that we describe as search problems? Recall the notions
of memoization and dynamic programming: give an example of a problem that benefits from dynamic
programming. In no more than two sentences, what is the general idea in memoization, and which types
of computation lend themselves especially well to dynamic programming?

2 Hidden Markov Models (120 Points)

Assume the following part-of-speech tagged training ‘corpus’ of just one sentence:�

�

�

�

still , time s move is being received well , once again .
rb , nnp pos nn vbz vbg vbn rb , rb rb .

(a) In a few sentences, discuss the concept of smoothing and explain why it is important. Next, ignoring
smoothing and making the standard simplifying assumptions for a näıve bi-gram HMM (including the
assumption that the training corpus provides the full inventory of distinct tags and complete vocabulary),
calculate the following:

(i) For each tag t, the probability of t following the tag rb, i.e. P (t|rb)

(ii) The emission probabilities P (move|nnp), P (move|nn), and P (well|rb).

(b) Assume further that for each tag t, P (t|<s>) = P (t); in one sentence, what does it mean to make this
assumption. Construct part of the Viterbi trellis for tagging the utterance once again , time . Rather
than calculating all values, indicate the total size of the trellis and the computations for filling in the first
two columns.

(c) In a few sentences, summarize the key points of the Viterbi algorithm. What is the interpretation of each
cell in the trellis? What is the complexity of the algorithm, i.e. the number of computations performed
in relation to (i) the length of the input sequence and (b) the size of the tag set? Very briefly, sketch an
alternative, näıve method for computing the most probable tag sequence t

n

1
, given an input string w

n

1
;

state how the Viterbi algorithm improves over this approach.

3 Context-Free Grammars and Parsing (130 Points)

Consider the language defined by the following grammar:'

&

$

%

S → VP NP NP → kim

VP → PP VP NP → oslo
NP → PP NP NP → snow

VP → NP V V → adores

PP → NP P P → in

(a) For each of the following items, identify the number of readings (distinct analyses) that the grammar of
Mirror English assigns, and draw the parse trees for each of the readings.

(i) oslo in snow adores kim.

(ii) kim adores snow in oslo.

(iii) snow adores in oslo kim.

(b) If possible, provide one example each of a sentence of Mirror English with exactly (i) three and (ii) four
readings.

(c) Identify which of the following parsing strategies, if any, will run into difficulties with the grammar of
Mirror English, and briefly explain why: (i) top-down parsing or (ii) bottom-up parsing. Is the grammar
of Mirror English suitable for use with the CKY parser? If so, why? If not, why not?

(d) In a few sentences, discuss the concept of local ambiguity that is at the core of the CKY and generalized
chart parsers. Do any of the examples (i) to (iii) from part (a) above contain local ambiguity? If so, where
exactly, and what would happen in chart parsing.

(e) Recall very briefly the role of the chart in the CKY and generalized chart parsers. What types of infor-
mation are associated with each edge in the chart? How are active edges different from passive ones (feel
free to use the ‘dating’ metaphor, if you find it useful), and what is the general form of the fundamental

rule in chart parsing?

4 Probabilistic Context-Free Grammar (100 Points)

(a) When adapting CFGs to Probabilistic Context-Free Grammars, we made one extension to the elements of
the original CFG and added an additional condition on the elements of the set P of productions. Sketch
the formalisation of a context-free grammar (as an n-tuple) that we used in the class, and summarize the
revisions we made in extending CFGs to PCFGs.

(b) Following is a probabilistic variant of the grammar of Mirror English:'

&

$

%

S → VP NP [1.0] NP → kim [0.2]
VP → PP VP [0.2] NP → oslo [0.2]
NP → PP NP [0.2] NP → snow [0.4]
VP → NP V [0-9] V → adores [0.2]
PP → NP P [1.0] P → in [0.2]

Assuming ‘S’ as the start symbol and sets of non-terminal and terminal symbols as implicitly given by
the rules above, is this grammar a valid PCFG? If not, why not?

(c) Whether or not this grammar is a valid PCFG, determine the probability of the sentence oslo in snow

adores kim according to the rules above.

5 Feature Structures and Unifiction (100 Points)

(a) What is a good basic measure to quantify the cost of feature structure manipulation, i.e. the amount
of effort required to copy a feature structure, or unify two structures? Recall the unification and copy
procedures that we implemented in the course; for each of the two, is it destructive, non-destructive, or
quasi-destructive in nature?

(b) Assume the following type hierarchy:

top
����

HHHH
bar fiz


`````````̀
foo baz          
HHHH

fee

`````````̀
����

bee

�
�

bez

@
@

biz

(c) Draw the following feature structures as DAGs, i.e. as graphs of labeled nodes and labeled, directed arcs:

foo

A 1
bar

[

C bee
]

B 1

fee

A
bar

[

C baz
]

B
baz

[

D biz
]

In no more than two sentences, comment on the correspondences between elements of the feature structure
and elements of the DAG.

(d) Graphically, show the result of destructively unifying the two DAGs. Are the two structure compatible,
i.e. does unification actually succeed? How does our unifier implement the notion of equivalence classes
of nodes?

6 Common-Lisp (150 Points)

(a) How many elements are contained in the list returned by the following expression? What will happen
when we use the function length() to count them?

(let ((foo (list 42)))

(setf (rest foo) foo))

Describe the effects of the function ?() below. Discuss at least one calling example and show the ‘box
notation’ used to keep track of cons() cells.

(b) At various points in the class we talked about data structures to index and efficiently retrieve information,
for example the so-called transition and emission matrices in the context of HMMs. Recall that, for the
emission matrix, we typically looked up probabilities for a pair of the current state (encoded as an integer)
and the current word (a string). Given this scenario, briefly discuss the relative strengths and weaknesses
of lists, arrays, and hash tables for associative retrieval, i.e. the look-up of values associated with keys
that (conceptually) pair an integer with a string. Reflect on the number of distinct values (in a typical
HMM, say one used for PoS tagging) along both dimensions, and further take into consideration whether
you expect the emission matrix to be densely or sparsely populated, i.e. what proportion of combinations
(state plus word) out of the set of possible combinations will typically be used.

(c) Write a two-place function ditch() that takes an atom as its first and a list as its second argument;
ditch() removes all occurrences of the atom in the list, e.g.

? (ditch ’c ’(a b c d e c))

→ (A B D E)

? (ditch ’f ’(a b c d e c))

→ (A B C D E C)

Note that we are not primarily concerned with specific details of Lisp syntax here. If you find that easier,
feel free to use elements of ‘pseudo code’ in your function definition, as long as it is clear how exactly
everything will work. Give a brief informal summary of the basic principles (e.g. in terms of base case(s)
vs. recursive cases) and general approach of your implementation.

