NP VP

/\ |
Det N V]

| | |
The dog parked

[LTOP Ay
INDEX e5

| HCONS (h3 =g ho, he =¢ hs)

def.q-rel “bark_v_rel”

prpstn_m_rel LBL hy “dog-n_rel” LBL ho

RELS < LBL hq ARGO x5 LBL hs ARGO e
MARG h3| |RSTRhg| |ARGO a5 |, 12

BODY hy; 5

Computational Linguistics
(INF2820 — Bits & Pieces)

SPR

[HEAD
ohrase COMPS [3]

phrase

SPR ()
<>] _> {COMPSQ]' {
phrase

Stephan Oepen

Universitetet 1 Oslo

oe@ifi.uio.no

HEAD
seR ([2])
COMPS

A Highly Ambiguous Example

The manager placed his bid on my desk.

INF2820 — 6-MAY-10 (0e@ifi.uio.no)

Computational Linguistics (2)

HEAD verb
SPR () | | |
{hand,, give;, sendy, ...} HEAD noun HEAD noun
COMPS { |[SPR () |, SPR ()
phrase_COMPSo | phrase-CDMPS<>
HEAD verb
SPR <> _ |
{hand,, give,, send,, ...} HEAD noun HEAD prep[PFoRMto}
COMPS { |SPR () | PR ()
COMPS () OMPS
phrase! ' phrasel ()

lex-item

word lexeme

3sing-word non-3sing-word /\

Intransitive-Ixm

T

noun-Ixm intransitive-verb-Ixm

_

e Lexical entries are uninflected; cannot enter syntax by themselves;

e inflectional rules ‘make’ word from lexeme, possibly with ‘null” suffix.

h(letter-set (!s abcdefghijklmnopqrtuvwxyz))

noun-non-3sing_irule :=
hsuffix (!s !ss) (!ss !ssses) (ss sses)
non-3sing-word &
[HEAD [AGR non-3sing],
ARGS < noun-1lxm >].

noun-3sing_irule :=
3sing-word &
[ORTH #1,
ARGS < noun-1xm & [ORTH #1] >].

pass

passes

Recursion in the Type Hierarchy

e Type hierarchy must be finite after type inference; illegal type constraint:
x1ist* := xtop* & [FIRST *top*, REST x*listx*].

e needs additional provision for empty lists; indirect recursion:

1ist := *top*.
ne-list := *listx & [FIRST *top*, REST *listx].
null := *listx*.

e recursive types allow for parameterized list types (‘list of X’):

*g—listx := *1listx*.
s—-ne-list := *ne-list* & *s-list &

[FIRST syn-struc, REST *s-listx*].
s-null := *null* & *s-list*.

INF2820 — 6-MAY-10 (0e@ifi.uio.no)

Computational Linguistics (6)

Our Grammars: Table of Contents

Type Description Language (TDL)
e types.tdl type definitions: hierarchy of grammatical knowledge;

e lexicon.tdl Instances of (lexical) types plus orthography;
e rules.tdl instances of construction types; used by the parser;
e lrules.tdl lexical rules, applied before non-lexical rules;

e irules.tdl lexical rules that require orthographemic variation;

e roots.tdl grammar start symbol(s): ‘selection’ of final results.

Auxiliary Files (Grammar Configuration for LKB)
e labels.tdl TFS templates abbreviating node labels in trees;

e globals.lsp, user-fns.1lsp parameters and interface functions;

e mrsglobals.lsp MRS parameters (path to semantics et al.)

INF2820 — 6-MAY-10 (0e@ifi.uio.no)

Computational Linguistics (7)

LInGO English Resource Grammar

Linguistic Grammars On-Line (http://lingo.stanford.edu/erg)

e LINGO English Resource Grammar (Dan Flickinger et al., sinc
e general-purpose HPSG; domain-specific lexica (some 32,000 lexemes);

e development using LKB; high-efficiency C!**! parser for applications;

e domain-specific vocabulary addition and tuning verage;

e average parse times: a few seconds per sentence, for Wikipedia text;

— exact same resource used simultaneously in many (research) projects.

An Open-Source Repository (http://www.delph-in.net/)

e Harmonize theory, formalism, and tools:ing- and software;

e World-wide initiative, now twelve languages under active development.

INF2820 — 6-MAY-10 (0e@ifi.uio.no)

Computational Linguistics (8)

Review: Context-Free Grammars

e Formally, a context-free grammar (CFG) is a quadruple: (C, X, P, .S)
e (' is the set of categories (aka non-terminals), e.g. {S, NP, VP, V};
e Y is the vocabulary (aka terminals), e.g. {Kim, snow, saw, in};

e P is a set of category rewrite rules (aka productions), e.g.

/S—>NPVP\

VP — V NP
NP — Kim
NP — snow
V — saw

o /
e S € C'Is the start symbol, a filter on complete (‘sentential’) results;

e foreachrule‘a — 61,05,....0, e P.acCand g, e CUX; 1 <1 <n.

INF2820 — 6-MAY-10 (0e@ifi.uio.no)

Computational Linguistics (9)

The Chomsky Hierarchy of (Formal) Languages

e (Formal) Languages vary in ‘degree of structural complexity’ exhibited;

e traditionally: «* (iteration) vs. a"b" (nesting) vs. a"b"'c"d™ (‘cross-serial’);

e Chomsky Hierarchy: inclusion classes of formal languages; Type 0 — 3.

0 unrestricted By — B Turing Machine

1 | context-sensitive | 518, — B3, | linearly-bounded automaton

2 context-free a— push-down automaton

3 regular a—0|ad finite-state automaton
aeC, fe(CUL), ye(CUX)T, et

What is the Formal Complexity of Natural Languages?
e Minimally context-free (center self-embedding, e.g. in relative clauses);

e (Culy; Shieber, 1985): not context-free (Bambara, Swiss German);

e (Joshi, 1985): extra class of mildly context-sensitive languages (TAG).

INF2820 — 6-MAY-10 (0e@ifi.uio.no)

Computational Linguistics (10)

Adding Semantics to Unification Grammars

e Logical Form

For each sentence admitted by the grammar, we want to produce a
meaning representation that is suitable for applying rules of inference.

This fierce dog chased that angry cat.

this(x) A fierce(x) A dog(x) A chase(e,x,y)
A past(e) A that(y) A angry(y) A cat(y)

e Compositionality
The meaning of each phrase is composed of the meanings of its parts.

e EXisting Machinery
Unification is the only means for constructing semantics in the grammar.

INF2820 — 6-MAY-10 (0e@ifi.uio.no)

Computational Linguistics (11)

Appending Lists with Unification

e A difference list embeds an open-ended list into a container structure
that provides a ‘pointer’ to the end of the ordinary list at the top level:

FIRST X FIRSTY
LIST . LIST .
. REST |2|*list* . REST |4/|*list*
A *ne-|ist* B *ne-|ist*
. LAST |2 . LAST |4
*dlist*l *dlist*L

e Using the LAST pointer of difference list|A| we can append Al and |B] by

() unifying the front of B (i.e. the value of its LIST feature) into the talil
of |Al (I.e. the value of its LAST feature); and

(1) using the tail of |B] as the new tail for the result of the concatenation.

INF2820 — 6-MAY-10 (0e@ifi.uio.no)

Computational Linguistics (12)

Notational Conventions

e lists not avalilable as built-in data type; abbreviatory notation in TDL.:
< a, b >= [FIRST a, REST [FIRST b, REST *nullx*]]

e underspecified (variable-length) list:
<a, ... >=1[FIRST a, REST *listx*]

o difference (open-ended) lists; allow concatenation by unification:
<!'a '>= [LIST [FIRST a, REST #tail], LAST #tail]

e built-in and ‘non-linguistic’ types pre- and suffixed by asterisk (*top*);

e strings (e.g. “chased”) need no declaration; always subtypes of *string*;

e Strings cannot have subtypes and are (thus) mutually incompatible.

INF2820 — 6-MAY-10 (0e@ifi.uio.no)

Computational Linguistics (13)

An Example: Concatenation of Orthography

LIST
LAST

LIST
LAST

LIST

TH
OR LAST

ORTH ORTH

INF2820 — 6-MAY-10 (0e@ifi.uio.no)

Computational Linguistics (14)

