S [LTOP By
INDEX e
def_g-rel . .
NP VP prpstn_m_rel LBL hy “dog_n_rel” fg{lk_v_re}ll
Dm | RELS < LBL hq ARGO x5 LBL hs inco 69 >
v MARG h3| |RSTRhg| |ARGO x5 Py 2
The dog parked |HCONS (hs =4 ho, he =4 hs)

Computational Linguistics
(INF2820 — Chart Parsing)

S—NPVP; S—SPP; S— VP

Stephan Oepen

Universitetet i Oslo

oe@ifi.uio.no

Top-Down (Goal-Oriented)

e Left recursion (e.g. a rule like VP — VP PP’) causes infinite recursion:;

e grammar conversion technigues (eliminating left recursion) exist, but will
typically be undesirable for natural language processing applications;

— assume bottom-up as basic search strategy for remainder of the course.

Bottom-Up (Data-Oriented)

e unary (left-recursive) rules (e.g. ‘NP — NP’) would still be problematic;

e lack of parsing goal: compute all possible derivations for, say, the input
adores snow; however, it is ultimately rejected since it is not sentential,

e avallability of partial analyses desirable for, at least, some applications.

Recursive Function Calls Kim adores snow (in Oslo)" I

1500000

n trees calls
1250000 - 0 1 46
1000000 - 1 2 170

2 5 593
750000 3 14 2,093

4 42 7,539
P0R000” 5 | 132 27,627
E0000 6 429 102,570

7 1430 384,566

0e " . . 8 4862 1,452,776
Number of Prepositional Phrases (n) ' '

e For many substrings, more than one way of deriving the same category;

NPs:fi|/@H B H B F-HAHBB B=A-8/08

e parse forest — a single item represents multiple trees [Billot & Lang, 89].

Basic Notions
e Use chart to record partial analyses, indexing them by string positions;

e count inter-word vertices; CKY: chart row Is start, column end vertex;

e treat multiple ways of deriving the same category for some substring as
equivalent; pursue only once when combining with other constituents.

Key Benefits
e Dynamic programming (memoization): avoid recomputation of results;

e efficient indexing of constituents: no search by start or end positions;

e compute parse forest with exponential ‘extension’ in polynomial time.

The CKY (Cocke, Kasami, & Younger) Algorithm

for (0 <4 < |input|) do
chartj; ;1) « {a|a — input; € P};
for (1 <1 < |input|) do
for (0 < < |input| —[) do
for (1 <j <lI)do
if (0 — G182 € P A By €charty; ;) A B2 € charty, ;1,41 then
charty; ;1) < chart; ;.. U {a};

Kim adored snow in Oslo 1 2 3 4 5
(P21 olNe| s |s
- o 1 V | VP VP

0,5] — [0,1] + [1,5]
0,5] — [0,2] + [2,5] 2 NP] NP
0,5] < [0,3] + [3,5 3 P | PP
K 0,5] «— [0,4| + |4,5]) A -

INF2820 18-MAR-010 (0e@ifi.uio.no)

Chart Parsing (with Context-Free Grammars) (6)

Limitations of the CKY Algorithm

Built-In Assumptions
e Chomsky Normal Form grammars: a — 515, or a — v (6; € C, v € Y);

e breadth-first (aka exhaustive): always compute all values for each cell;

e rigid control structure: bottom-up, left-to-right (one diagonal at a time).

Generalized Chart Parsing
e Liberate order of computation: no assumptions about earlier results;

e active edges encode partial rule instantiations, ‘waiting’ for additional
(adjacent and passive) constituents to complete: (1,2, VP — V e NPJ;

e parser can fill in chart cells in any order and guarantee completeness.

INF2820 — 18-MAR-010 (0e@ifi.uio.no)

Chart Parsing (with Context-Free Grammars) (7)

Generalized Chart Parsing

e The parse chart is a two-dimensional matrix of edges (aka chart items);
e an edge Is a (possibly partial) rule instantiation over a substring of input;
¢ the chart indexes edges by start and end string position (aka vertices);
e dot in rule RHS indicates degree of completion: o« — 5...0,_1 ® G;...3,

e active edges (aka incomplete items) — partial RHS: [1,2, VP — V e NP|;
e passive edges (aka complete items) —full RHS: [1,3,VP — V NPe|;

4 N

The Fundamental Rule

[ia ja Q@ — ﬁl---ﬁi—l o 6@671] + [.]7 k) BZ' — 7—’_‘]
— i, k, o — P15 @ fig1... 5]

INF2820 18-MAR-010 (0e@ifi.uio.no)

Chart Parsing (with Context-Free Grammars) (8)

An Example of a (Near-)Complete Chart

1 2 3 4 S
NP — NP e PP
S—NPeVP S—NPVPe
NP — kim e

VP ~VeNP | VP—VPePP VSV e

V —adorede | VP —VNPe VP — VNP e
NP — NP e PP NP — NP e PP
NP — snow e NP — NP PP o

PP—PeNP

P—ine PP—PNPe

NP — NP e PP

NP — oslo e

[o Kim ; adored 5, snow 5 in 4, Oslo 5 j

INF2820 — 18-MAR-010 (0e@ifi.uio.no)

Chart Parsing (with Context-Free Grammars) (9)

(Even) More Active Edges

S— eNPVP S—NPeVP
NP — ¢NPPP | NP — NP ePP S—NPVPe
NP — ekim NP — kim e
o e | VP VeNP | VP—VPePP
V — eadored | V—adorede VP —V NP e
NP — e NP PP NP — NP e PP
NP — esnow | NP —snowe

e Include all grammar rules as epsilon edges in each chart, ; cell.

e after initialization, apply fundamental rule until fixpoint is reached.

INF2820 — 18-MAR-010 (0e@ifi.uio.no)

Chart Parsing (with Context-Free Grammars) (10)

Our ToDo List: Keeping Track of Remaining Work

The Abstract Goal
e Any chart parsing algorithm needs to check all pairs of adjacent edges.

A Naive Strategy

e Keep iterating through the complete chart, combining all possible pairs,
until no additional edges can be derived (i.e. the fixpoint is reached);

e frequent attempts to combine pairs multiple times: deriving ‘duplicates’.

An Agenda-Driven Strategy
e Combine each pair exactly once, viz. when both elements are available;

e maintain agenda of new edges, yet to be checked against chart edges;

e New edges go into agenda first, add to chart upon retrieval from agenda.

INF2820 — 18-MAR-010 (0e@ifi.uio.no)

Chart Parsing (with Context-Free Grammars) (11)

Backpointers: Recording the Derivation History

0 1 1 3
2:S— eNPVP 10: S— 8eVP
1:NP— eNPPP | 9:NP —8ePP 17: S—815e
0: NP — e kim 8: NP —kime
SV VPP 12 vP . 11eNP | 16: VP - 156 PP
3\ — eadored | 11:V—adorede | 15:VP —1113e

7: NP — e NP PP
6: NP — e snow

14: NP — 13 ¢ PP
13: NP — snow e

e Use edges to record derivation trees: backpointers to daughters;

e a single edge can represent multiple derivations: backpointer sets.

INF2820 — 18-MAR-010 (0e@ifi.uio.no)

Chart Parsing (with Context-Free Grammars) (12)

