

Computational Linguistics (INF2820 — Chart Parsing)

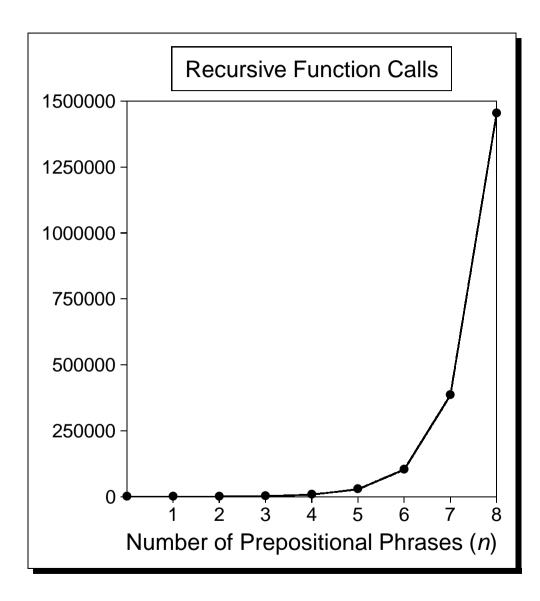
 $S \longrightarrow NP \ VP; \ S \longrightarrow S \ PP; \ S \longrightarrow VP$

Stephan Oepen

Universitetet i Oslo oe@ifi.uio.no

Top-Down vs. Bottom-Up Parsing

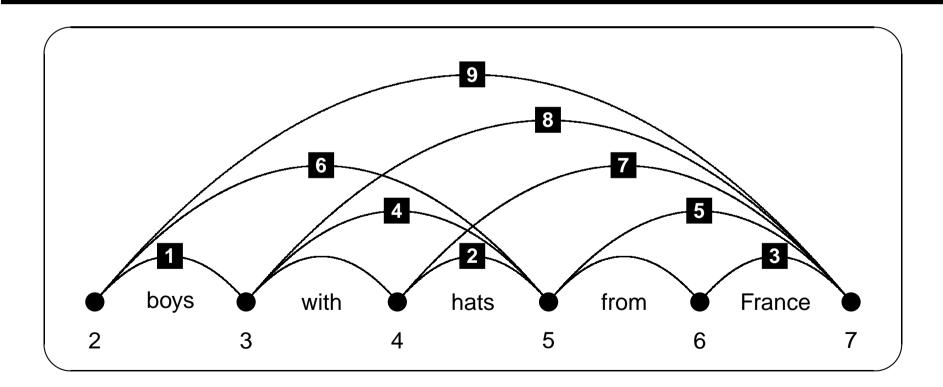
Top-Down (Goal-Oriented)


- Left recursion (e.g. a rule like 'VP → VP PP') causes infinite recursion;
- grammar conversion techniques (eliminating left recursion) exist, but will typically be undesirable for natural language processing applications;
- → assume bottom-up as basic search strategy for remainder of the course.

Bottom-Up (Data-Oriented)

- unary (left-recursive) rules (e.g. 'NP → NP') would still be problematic;
- lack of parsing goal: compute all possible derivations for, say, the input adores snow; however, it is ultimately rejected since it is not sentential;
- availability of partial analyses desirable for, at least, some applications.

Quantifying the Complexity of the Parsing Task


Kim adores snow (in Oslo)ⁿ

n	trees	calls
0	1	46
1	2	170
2	5	593
3	14	2,093
4	42	7,539
5	132	27,627
6	429	102,570
7	1430	384,566
8	4862	1,452,776
:	i i	i

Bounding Ambiguity — The Parse Chart

- For many substrings, more than one way of deriving the same category;
- ullet NPs: 1 | 2 | 3 | 6 | 7 | 9; PPs: 4 | 5 | 8; 9 \equiv 1 + 8 | 6 + 5;
- parse forest a single item represents multiple trees [Billot & Lang, 89].

Chart Parsing — Specialized Dynamic Programming

Basic Notions

- Use chart to record partial analyses, indexing them by string positions;
- count inter-word vertices; CKY: chart row is *start*, column *end* vertex;
- treat multiple ways of deriving the same category for some substring as equivalent; pursue only once when combining with other constituents.

Key Benefits

- Dynamic programming (memoization): avoid recomputation of results;
- efficient indexing of constituents: no search by start or end positions;
- compute *parse forest* with exponential 'extension' in *polynomial* time.

The CKY (Cocke, Kasami, & Younger) Algorithm

```
\begin{aligned} &\text{for } (0 \leq i < |\textit{input}|) \text{ do} \\ &\textit{chart}_{[i,i+1]} \leftarrow \{\alpha \mid \alpha \rightarrow \textit{input}_i \in P\}; \\ &\text{for } (1 \leq l < |\textit{input}|) \text{ do} \\ &\text{for } (0 \leq i < |\textit{input}| - l) \text{ do} \\ &\text{for } (1 \leq j \leq l) \text{ do} \\ &\text{if } (\alpha \rightarrow \beta_1 \, \beta_2 \in P \land \beta_1 \in \textit{chart}_{[i,i+j]} \land \beta_2 \in \textit{chart}_{[i+j,i+l+1]}) \text{ then} \\ &\textit{chart}_{[i,i+l+1]} \leftarrow \textit{chart}_{[i,i+l+1]} \cup \{\alpha\}; \end{aligned}
```

Kim adored snow in Oslo

$$[0,2] \leftarrow [0,1] + [1,2]$$
 \cdots
 $[0,5] \leftarrow [0,1] + [1,5]$
 $[0,5] \leftarrow [0,2] + [2,5]$
 $[0,5] \leftarrow [0,3] + [3,5]$
 $[0,5] \leftarrow [0,4] + [4,5]$

0	NP		Ø		S
1		V	VP		VP
2			NP		NP
3				Р	PP
4					NP

Limitations of the CKY Algorithm

Built-In Assumptions

- Chomsky Normal Form grammars: $\alpha \to \beta_1\beta_2$ or $\alpha \to \gamma$ ($\beta_i \in C$, $\gamma \in \Sigma$);
- breadth-first (aka exhaustive): always compute all values for each cell;
- rigid control structure: bottom-up, left-to-right (one diagonal at a time).

Generalized Chart Parsing

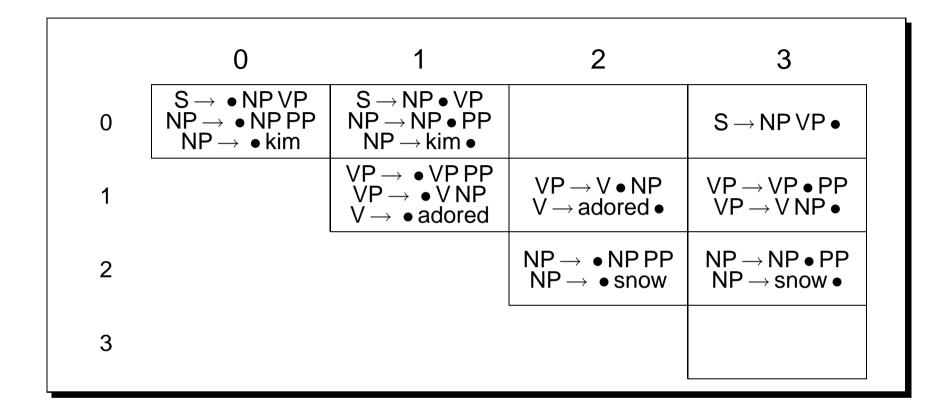
- Liberate order of computation: no assumptions about earlier results;
- active edges encode partial rule instantiations, 'waiting' for additional (adjacent and passive) constituents to complete: [1, 2, VP → V • NP];
- parser can fill in chart cells in any order and guarantee completeness.

Generalized Chart Parsing

- The parse *chart* is a two-dimensional matrix of *edges* (aka chart items);
- an edge is a (possibly partial) rule instantiation over a substring of input;
- the chart indexes edges by start and end string position (aka vertices);
- dot in rule RHS indicates degree of completion: $\alpha \to \beta_1 ... \beta_{i-1} \bullet \beta_i ... \beta_n$
- active edges (aka incomplete items) partial RHS: [1, 2, VP → V NP];
- passive edges (aka complete items) full RHS: [1, 3, VP → V NP•];

The Fundamental Rule

$$[i, j, \alpha \to \beta_1 \dots \beta_{i-1} \bullet \beta_i \dots \beta_n] + [j, k, \beta_i \to \gamma^+ \bullet]$$
$$\mapsto [i, k, \alpha \to \beta_1 \dots \beta_i \bullet \beta_{i+1} \dots \beta_n]$$


An Example of a (Near-)Complete Chart

 $_0$ Kim $_1$ adored $_2$ snow $_3$ in $_4$ Oslo $_5$

(Even) More Active Edges

- ullet Include all grammar rules as *epsilon* edges in each *chart*_[i,i] cell.
- after initialization, apply fundamental rule until fixpoint is reached.

Our ToDo List: Keeping Track of Remaining Work

The Abstract Goal

Any chart parsing algorithm needs to check all pairs of adjacent edges.

A Naïve Strategy

- Keep iterating through the complete chart, combining all possible pairs, until no additional edges can be derived (i.e. the fixpoint is reached);
- frequent attempts to combine pairs multiple times: deriving 'duplicates'.

An Agenda-Driven Strategy

- Combine each pair exactly once, viz. when both elements are available;
- maintain agenda of new edges, yet to be checked against chart edges;
- new edges go into agenda first, add to chart upon retrieval from agenda.

Backpointers: Recording the Derivation History

	0	1	1	3
0	$ \begin{array}{c} 2\text{: }S \rightarrow \bullet \text{ NP VP} \\ 1\text{: NP} \rightarrow \bullet \text{ NP PP} \\ 0\text{: NP} \rightarrow \bullet \text{ kim} \end{array} $	10: S → 8 • VP 9: NP → 8 • PP 8: NP → kim •		17: S → 8 15 •
1		5: $VP \rightarrow \bullet VP PP$ 4: $VP \rightarrow \bullet V NP$ 3: $V \rightarrow \bullet$ adored	12: VP → 11 • NP 11: V → adored •	16: VP → 15 • PP 15: VP → 11 13 •
2			7: NP → • NP PP 6: NP → • snow	14: NP → 13 • PP 13: NP → snow •
3				

- Use edges to record derivation trees: backpointers to daughters;
- a single edge can represent multiple derivations: backpointer sets.

