
Computational Linguistics (Spring 2010, Exercise 1b)

Goals

1. Learn how to use Lisp structures to create abstract data types;

2. encode, manipulate, and output a simple context-free grammar;

3. study the behavior of a näıve top-down parsing algorithm.

1 Bring up the Editor and the LKB Lisp Environment

(a) As always, when logged into one of the IFI Linux machines, launch the development environment that we
will use throughout the semester, by typing (at the shell prompt):

lkb &

This will lauch emacs, our editor of choice, with the Lisp and LKB running as sub-processes to the
editor. The benefits of this set-up will become apparent sooner or later. In emacs, find the buffer named
‘*common-lisp*’. Here you can interact with Allegro Common Lisp, the Lisp system behind the LKB.

(b) Our course setup should have magically copied a new file ‘parse.lsp’ into your home directory; open the
file in emacs to take a peak at its contents. In the course of this exercise, we will modify and extend the
source code in this file. To test your code after each modification, you need to make the Lisp environment
aware of your changes. Experiment with a combination of (a) just pasting into the ‘*common-lisp*’
buffer; (b) using the Compile and load file command from the ACL menu; or (c) selectively evaluating
s-expressions straight from your file via the C-M-x (Control + Meta + ‘x’) keyboard shortcut.

2 Pretty Printing the Grammar

(a) Lisp structures print in a format that can be hard to appreciate by the human eye. Write a function
print-rule() to take two arguments, a grammar rule and an optional stream argument. Note that the
syntax for optional function parameters in Lisp is as follows:

(defun print-rule (rule &optional (stream t))

...)

The above means that the function can be called with either one or two arguments. When the stream

argument is not present in a call to print-rule(), then it will have t (the ‘standard output’ stream
typically connected to our terminal) as its default value.

(b) Read through the (almost excessive) comments in ‘parse.lsp’ and work out how the rule structure works.
The output of print-rule() should look somewhat like this, for example:

S --> NP VP

(c) Now that we can print individual rules, write a function print-grammar() to operate on the global
variable *grammar* and nicely print out all productions, one per line. Additionally, print-grammar()
should mark all rules that have the start symbol of the grammar as their left-hand side (LHS) category
with a bit of additional decoration, e.g.

S --> NP VP [start]

NP --> KIM

NP --> SANDY

NP --> SNOW

VP --> V

VP --> V NP

V --> LAUGHED

V --> ADORED



3 Some Theory: Mirror English

Consider the language defined by the following grammar (assuming the conventional start symbol ‘S’):'

&

$

%

S → VP NP NP → kim

VP → PP VP NP → oslo

NP → PP NP NP → snow

VP → NP V V → adores

PP → P NP P → in

(a) For each of the following items, identify the number of readings (distinct analyses) that the grammar of
Mirror English assigns:

(i) in oslo snow adores kim

(ii) kim adores snow in oslo

(iii) snow adores in oslo kim

(b) Draw the constituent tree for each of the readings.

(c) Where possible, provide one example each of a sentence of Mirror English with exactly (i) three and (ii)
four distinct readings.

4 Top-Down Parsing

(a) We have helpfully provided a near-complete implementation of a very simple parser for context-free gram-
mars, following the presentation of top-down parsing in Section 13.1.1 of Jurafsky & Martin (2008). The
only missing piece to invoking our parser is the helper function rules-deriving(); it seems that the
definition of this function somehow got lost in our file ‘parse.lsp’. Assuming our default value for
*grammar*, a call like (rules-deriving ’vp) should return a list of two rule structures, viz. those two
with the category VP as their left-hand side symbol, in other words: all rules deriving VPs. Replace the
‘...’ in our version of the file with your own code. As always, test your new code before you move on.

(b) Even though we will have more to say about the parsing problem, based on your reading of the first few
sections in Chapter 13 of Jurafsky & Martin (2008), see what happens when you invoke:

? (parse ’(kim laughed))

Remember that, by default, Lisp will abbreviate large s-expressions when printing the results of evaluation.
To see the full return value, wrap the parse() call inside a call to pprint(). Why do you think parse()

returns a list of results? Study our comments in ‘parse.lsp’ discussing the edge and parse structures.
Can you see how each edge instance corresponds to a tree? Draw the full tree(s) corresponding to the
result(s) of the above example call to parse().

(c) Write a recursive function that transforms the tree corresponding to an edge into a Lisp list. When
using lists to represent trees, we want the first() to correspond to the mother node, while the rest()

corresponds to the list of daughter nodes. For example:

? (edge-to-tree (parse-edge (first (parse ’(kim laughed)))))

→ (S (NP (KIM)) (VP (V (LAUGHED))))

5 Recursion in the Grammar

(a) Try to get a better understanding of how the top-down parser works. One useful technique might be to
augment the definitions of parse() and extend-parse() with a format() statement right at the top of
the function body. Make each function print the arguments with which it was called, for example:



parse(): input: (KIM LAUGHED); goal: S

extend-parse(): goal: S; analyzed: NIL; unanalyzed (NP VP); input: (KIM LAUGHED)

parse(): input: (KIM LAUGHED); goal: NP

extend-parse(): goal: NP; analyzed: NIL; unanalyzed (KIM); input: (KIM LAUGHED)

parse(): input: (KIM LAUGHED); goal: KIM

...

Note that for such debugging output, it may be convenient to not print the actual analyzed values given
to each call of extend-parse(), but instead to print the more compact result of invoking edge-to-tree()

on each element of the analyzed list. Make sure you understand what happens at each level of recursion,
and how the arguments to later invocations of parse() and extend-parse() result from earlier calls. In
your own words, what are the pieces of information in the structures returned by the parse() function,
and why are they needed?

(b) Our starting grammar has no way of analyzing inputs like, for example, Kim laughed with Sandy. Assuming
that the category for with is P (for preposition), add the rules necessary to (a) include with in our grammar,
(b) combine a preposition followed by an NP to form a PP (prepositional phrase), and (c) allow PPs to
attach to both NPs and VPs, where in either case the LHS category is unchanged, i.e. again NP or VP,
respectively. Before you explore the world of parsing with recursive grammar rules in its full beauty, test
your PP rules in isolation. Does a call like (parse ’(with) ’P) yield the expected result(s)? What
should be the return value for this call?

(c) Try parsing an input including a PP. What happens? Given the helpful logging output from part (a)
above, can you work out what causes the behavior that you see? Draw the tree(s) that you think would
have been the correct result(s), and explain in a few sentences why our top-down parser fails so miserably
in solving this particular problem.

6 Submitting Your Results

Please submit your results in email to Stephan (‘oe@ifi.uio.no’) and Arne (‘arnskj@ifi.uio.no’) before
midnight on Monday, March 8. Ideally, please provide a single file (an extended version of our ‘parse.lsp’)
including your code and answers to the questions above. Note that it is good practice to generously
document your code with comments (using the ‘;’ character, making the Lisp system ignore everything
that follows the semicolon).


