Computational Linguistics (Spring 2010) — Exercise 3b

High-Level Goals

e Perform list concatenation using open-ended lists and unification.

e Finally, add semantics to lexical entries and grammar rules.

e Use the LKB generator to identify overgeneration in the grammar.

1
(a)

Obtaining the Starting Grammar (0 Points)

Connect to the IFI Linux environment and launch the LKB. For this week, please obtain a fresh starting
grammar, by executing the following command from the shell prompt.

exercise3db

The resulting grammar (in the new sub-directory ‘exercise3b/’), essentially is the model solution to the
previous exercise, but we have made a small number of changes to allow concatenation of ORTH values
on phrases. Specifically, the attribute ORTH has moved from lez-item to expression and changed its value
from *string* to *dlist* (for difference list). In the lexicon, we converted all values of the feature ORTH
to one-element difference lists (e.g. ORTH <! "dog" !> instead of ORTH "dog". Accordingly, we applied a
similar change to the type prep-lzm, i.e. to make sure that what is equated with the PFORM feature is the
first element of the ORTH value.

Finally, we activated the LKB facility for printing parse trees with more conventional (and more com-
pact) node labels, like ‘S’, ‘NP’, et al. The rules and feature structures corresponding to each node are
unchanged, but the file ‘labels.tdl’ provides a set of templates that determine how to abbreviate fea-
ture structures for display purposes. Take a quick look at the contents of ‘labels.tdl’ to refresh your
understanding of how specific feature structure configurations correspond to traditional category labels.

Open-Ended Lists and Concatenation by Unification (20 Points)

The typed feature structure formalism that is implemented in the LKB (and similar systems) excludes re-
lational constraints (like append () or reverse() of lists). However, the difference list encoding in feature
structures allows us to achieve list concatenation using pure unification. A difference list is an open-ended
list that is embedded into a container structure providing a ‘pointer’ to the end of the list, e.g.

FIRST “foo” FIRST “bar”
LIST[1] [e] LIST [3] l .]
REST list* : REST [4]*list*
ne-list " B: *ne-list* "
sy LPAST 2] sqisy* LEAST (4]

Now, using the LAST pointer of difference list A we can append A and B by (i) unifying the front of B (i.e.
the value of its LIST feature) into the tail of A (its LAST value) and (ii) using the tail of difference list B
as the new tail for the result of the concatenation (see Copestake, 2002, for a more elaborate discussion).

The goal of this exercise is to pass up the ORTH values from words to phrases and use list concatenation
to determine the value of ORTH at each phrase. The top (‘S’) node in a complete analysis of a sentence
should have as its ORTH value a difference list that contains all words of the sentence, preferably in the
right order.

Each rule will be required to concatenate the ORTH values of all daughters to the rule and make the resulting
list the ORTH value on the mother. To avoid duplication of the append operation in the ‘rules.tdl’ file,
introduce types unary-rule and binary-rule that inherit from phrase and perform the concatenation of
ORTH values.

(b)

In order to have one specific type for each actual rule in the rules file and to allow unification of various
phrase subtypes to succeed, we need to cross-multiply the two types accounting for arity (number of
daughters) with the existing dimension we already have for phrases, namely the position of the head
daughter (head-initial vs. head-final). Use multiple inheritance to create the following types combining
the arity dimension with the dimension of head position: unary-head-initial, binary-head-initial, and
binary-head-final.

We also need to account for the effect on orthography of inflectional rules, which are subtypes of word.
Since inflectional rules can change the ORTH value, we cannot simply identify the ORTH of a word with the
ORTH of its ARGS.FIRST (the lexeme being inflected). But we still have to ensure that the ORTH difference
list is terminated. So add a constraint to the type word making its ORTH value be a one-element difference
list, which we can define as ‘<! [] !>,

Rework the file ‘rules.tdl’ to use the new, more specific rule types, as appropriate. Reload the grammar
and check correctness by parsing a few sentences interactively and verifying that the ORTH value on ‘S’
nodes contains all the words that contribute to the sentence.

Run the ‘Batch parse’ machinery on the ‘all.items’ file and validate the results.

Adding Semantics (40 Points)

Our approach to adding semantics to the grammar builds on list concatenation as the basic operation
of composition. Semantic relations are introduced by lexical entries and successively combined as words
are combined with other words (or phrases) to form larger phrases. We will use a type relation to
capture the basic units of semantics that are associated with words, and we’ll use subtypes argl-relation,
argl2-relation, and argl23-relation for predicates of corresponding arity:

PRED *string*

. PRED *string* ARGO index

PRED *st * . .
lARGO i;dZ;}g s ARGO index , e ARG1 inder
relation ARG1 index ARG2 index

argl-relation ARG3 ind
arg123-relation 3 index

Add an atomic type index with subtypes object and event, which we will use to represent variables in role
assignment within relations.

Add the types relation through arg123-relation (as shown above) below feat-struc.

To associate semantics with words and phrases, we need another type that will serve as the value of a new
SEM attribute in expression:

INDEX index
KEY relation

. RELS *dlist*
semantics

Roughly speaking, the INDEX attribute corresponds to the external variable that is available for binding, the
KEY attribute points to the distinguished relation that is used for semantic selection (typically contributed
by the semantic head; see the MRS paper on the course web site, if you strongly want to learn more about
our specific approach to semantics), and the RELS attribute holds a list of relations (see below). For the
lexical entries ‘dog’ and ‘chase’, respectively, we want the following semantics (as the value of their SEM
feature):

~

NG

]) [INDEX [4]event |
INDEX |1|object PRED “chase_rel”
PRED “dog_rel” ARGO
KEY ' ARGO ‘| KEY ARG1 index
relation .
. ARG2 index
arg12-relation
r1sT | FIRST
RELS REST r1sT | FIRST
LAST RELS REST [6]
semantics - - LAST @
semantics - .

Introduce the type semantics, add the feature SEM to expression, and constrain its value to semantics.

Enrich the lexeme type to reflect that (i) lexical items have a singleton RELS list, (ii) the KEY relation
corresponds to the first (and only) element in RELS, and (iii) the INDEX is the ARGO of the KEY.

Enrich the types det-lzm, noun-lzm, and verb-lem (or their equivalents) to constrain the semantic INDEX
to be of type object (for determiners and nouns) and event (for verbs), respectively.

Add a unique semantic predicate name, as the value of SEM.KEY.PRED, to each entry in the lexicon. Reload
the grammar and use the ‘View — Lex Entry’ menu command to inspect the lexical entries for ‘dog’ and
‘chase’, making sure they look as specified above (ignoring for now the linking of ARG1 et al. values to
syntactic arguments, of course, which will also affect the specificity of relation types you will see for now).

Roughly similar to ORTH, each phrase will accumulate the semantic contributions from each of its daughters
and use list concatenation in building up the RELS value; while technically we use a list for this purpose,
the order of elements in RELS is actually irrelevant: we are using a list to represent a bag (or multi-set) of
objects. Add the principles of semantic composition.

While unary rules simply pass up the entire SEM value from the daughter to the mother, binary rules apply
difference list concatenation to the SEM.RELS values.

In each phrase, the INDEX and KEY values are contributed by the semantic head, which can in principle
be distinct from the syntactic head daughter. For this exercise, however, we’ll always take the syntactic
head to be the semantic head. Add appropriate co-indexation of INDEX and KEY to the head-initial and
head-final types to express this generalization.

Inflectional rules are subtypes of word but behave much like unary rules; add the passing up of the SEM
value from the daughter to that of the mother on the type word. Also modify the derivational rule for
dative-shift (a lexeme-to-lexeme rule) to preserve the semantics from daughter to mother. Note that, in
general, derivational rules would be expected to alter the semantics, like the agentive rule which we have
excluded for this exercise.

Reload the grammar, eliminate remaining errors (if any), and make sure that (i) coverage remains un-
changed and (ii) the RELS value on ‘S’ nodes contains the relations of all words in the input sentence.
Since each word contributes exactly one relation in our grammar, the number of elements in the RELS list
should always be the same as the number of words in the sentence.

What remains to be achieved is the linking of syntactic arguments to semantic roles. We will use the
INDEX value of arguments (often called the index) to make this linking explicit. This requires enriching
the types for all lexemes that take arguments (i.e. have non-empty SPR or COMPS lists, and likewise for
non-empty MOD values on modifiers) to identify the INDEX value of each argument with exactly one role in
the relation of the functor (the semantic head).

Nouns identify the INDEX of their specifier with their own INDEX (also their ARGO).

All verbs identify the INDEX of their specifier with their ARG1 role; in addition, transitive verbs identify
the INDEX of their complement with their ARG2; analogously, ditransitive verbs map their complements to
ARG2 and ARG3 (note, however, that for the dative alternation we expect identical meanings).

(m)

(n)

Prepositions are special: they identify the INDEX of the expression selected for by MOD with their own
INDEX, and map the INDEX of their complement to ARG1. Adjectives are similar to prepositions, but have
no ARG1 role.

Reload the grammar, confirm everything works, and admire the beauty of semantic composition. Make
sure to verify that in sentences like ‘the dog barks’, ‘the cat gave that dog those aardvarks’, or ‘the cat
barked near those dogs’ the following well-formedness conditions hold in the semantics: (i) all INDEX values
are specialized to either event or object, (ii) determiner and noun in each noun phrase share the same
ARGO variable, (iii) each role in a verbal relation is bound to the index of the corresponding argument, (iv)
the ARGO of a prepositional phrase modifier is bound to the ARGO of the noun or verb being modified, and
(v) the ARGO of adjectives is bound to the ARGO of the noun it modifies.

The LKB provides facilities to read out a semantic formula from a feature structure, print it in various
formats, perform (limited) semantic inference, and generate from it. Because our semantics is (currently)
very shallow, however, only a subset of this functionality can be used meaningfully.

From the tree summary display (the window showing tiny trees after parsing), execute the menu commands
‘MRS’ and ‘Indexed MRS’ to see a readable form of the semantics produced by your grammar.

Generation: The Inverse of Parsing (5 Points)

The LKB comprises a chart-based generator that, given a suitable semantic formula, can generate all
sentences (i.e. well-formed strings) that correspond to this semantics. For the generator to work, we need
to make a final small extension to our grammar:

For generator-internal purposes, the generator requires INDEX values to have one appropriate magic feature,
SKOLEM, whose value is of type *string*. Enrich the type definition for indezx appropriately. Reload the
grammar.

To get full access to the LKB generation component, execute the ‘Options — Expand Menu’ command.
Then, to make the lexicon accessible to the generator, execute ‘Generator — Index’; if there are warnings
or errors at this stage, revisit your grammar. In order for the indexing to happen at load time, edit the
file ‘script’ in your grammar directory which is the load file for the grammar. Towards the end of the file,
uncomment the line (index-for-generator) by removing all semicolons.

Once indexing is complete, from the tree summary display explore the output of the ‘Generate’ command
for various sentences; this is a short-cut command for extracting the indexed semantics from a feature
structure and using that as the input for the generator.

Eliminate More Overgeneration (15 Points)

At this point, generating from the semantics of the aardvark barks should return four sentences. Investigate
the reasons for this overgeneration, identify the missing bits of information, and speculate about changes
to the grammar that would be needed to eliminate this ambiguity. Submit a few paragraphs of text
summarizing your findings.

Use the LKB to (re-)generate from the semantics of that cat gave those dogs the aardvark and that cat
gave the aardark to those dogs. Inspect the associated semantics and determine why the two sentences
are not considered semantically equivalent yet. In one paragraph (or two) of text, sketch a modification
to the grammar that will make both usages of ditransitive verbs like give result in equivalent semantics.
What is the main challenge here?

Submitting Your Results

To provide your results to us, please pack up the entire contents of your ‘exercise3b/’ directory when
you are done—for example as one ‘.tgz’ or ‘.zip file. Email the archive file to both Arne and Stephan
before the final deadline, Monday, May 24. For the IFI Linux environment, we provide a command-line
tool for you to automate the process of submitting results to us.

