
S

NP

Det

The

N

dog

VP

V

barked



























LTOP h1

INDEX e2

RELS

〈







prpstn m rel

LBL h1

MARG h3





















def q rel

LBL h4

ARG0 x5

RSTR h6

BODY h7





















“dog n rel”

LBL h8

ARG0 x5

















“bark v rel”

LBL h9

ARG0 e2

ARG1 x5











〉

HCONS 〈h3 =q h9, h6 =q h8〉



























Computational Linguistics
(INF2820 — More Lisp)
(defun ? (n) (if (equal n 0) 1 (* n (! (- n 1)))))

Stephan Oepen

Universitetet i Oslo

oe@ifi.uio.no

Iteration — Another Control Structure

• Recursion is very powerful, but at times iteration comes more natural:'

&

$

%

(loop

for number in ’(1 2 3 4 5 6 7 8 9)

when (oddp number)

collect number))

Some loop() Directives
• for symbol { in | on } list iterate symbol through list elements or tails;

• for symbol from start [to end] [by step] count symbol in range;

• [{ when | unless } test] { collect | append } sexp accumulate sexp;

• [while test] do sexp+ execute expression(s) sexp+ in each iteration.

inf2820 — -feb- (oe@ifi.uio.no)

Computational Linguistics at Work (2)

A Few More Examples

• loop() is extremely general; a single iteration construct fits all needs:

? (loop for foo in ’(1 2 3) collect foo)

→ (1 2 3)

? (loop for foo on ’(1 2 3) collect foo)

→ ((1 2 3) (2 3) (3))

? (loop for foo on ’(1 2 3) append foo)

→ (1 2 3 2 3 3)

? (loop for i from 1 to 3 by 1 collect i)

→ (1 2 3)

• loop() returns the final value of the accumulator (collect or append);

• return() terminates the iteration immediately and returns a value:

? (loop for foo in ’(1 2 3) when (evenp foo) do (return foo))

→ 2

inf2820 — -feb- (oe@ifi.uio.no)

Computational Linguistics at Work (3)

Input and Output — Side Effects

• Input and output, to files or the terminal, is mediated through streams;

• the symbol t can be used to refer to the default stream, the terminal:

? (format t "line: ~a; token ‘~a’.~%" 42 "foo")

; line: 42; token ‘foo’.

→ nil

• (read stream nil) reads one well-formed s-expression from stream;

• (read-line stream nil) reads one line of text, returning it as a string;

• the second argument to reader functions asks to return nil on end-of-file.

'

&

$

%

(with-open-file (stream "sample.txt" :direction :input)

(loop

for line = (read-line stream nil)

while (not (null line)) do (format t "~a~%" line)))

inf2820 — -feb- (oe@ifi.uio.no)

Computational Linguistics at Work (4)

Fine Points of Strings and Regular Expressions

• Need to escape double quote (") in strings, e.g. "foo \"bar\" baz";

• likewise for RE operators, to force literal match, e.g. /\([a-z]+\)\./;

• backslash is escape character for Lisp strings → "\\([a-z]+\\)\\.";

• REs in Lisp represented as strings, thus need two levels of escaping.

• The Portable Perl-Compatible Regular Expressions package for Lisp;

? (ppcre:all-matches-as-strings

"(\\+|-)?[0-9,]+(\\.[0-9]+)?"

"in 1994, the loss was at $4,711,4242, or -4.2% per share"

→ ("1994," "4,711,4242," "-4.2")

• many more functions in PPCRE library; see the on-line documentation.

inf2820 — -feb- (oe@ifi.uio.no)

Computational Linguistics at Work (5)

