

Computational Linguistics (INF2820 — Morphology)

{ eat, eats, eating, ate, eaten }

Stephan Oepen

Universitetet i Oslo

oe@ifi.uio.no

Pattern Matching on Strings: Finite-State Automata

/baa+!/

ba! — baa! — baah! — baaaa! — baaaaaaaaaa!

- INF2820 — 18-FEB-10 (oe@ifi.uio.no) -

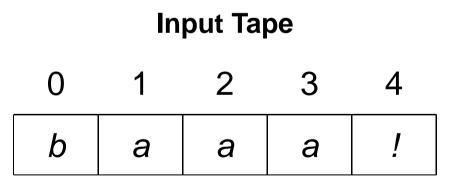
Finite-State Machines — Morphology (2)

Pattern Matching on Strings: Finite-State Automata

/baa+!/

ba! — baa! — baah! — baaaa! — baaaaaaaaaa!

Recognizing Regular Languages


- Finite-State Automata (FSAs) are very restricted Turing machines;
- states and transitions: read one symbol at a time from input tape;
- \rightarrow accept utterance when no more input, in a 'final' state; else reject.

Tracing the Recognition of a Simple Input

/baa+!/

ba! — baa! — baah! — baaaa! — baaaaaaaaaa!

- INF2820 — 18-FEB-10 (oe@ifi.uio.no) ----

Finite-State Machines — Morphology (3)

A Rather More Complex Example

/(aa)+|(aaa)+/

— INF2820 — 18-FEB-10 (oe@ifi.uio.no) —

Finite-State Machines — Morphology (4)

A Rather More Complex Example

/(aa)+|(aaa)+/

- Non-Deterministic FSAs (NFSAs): multiple transitions per symbol;
- \rightarrow a search space of possible solutions: decisions no longer obvious.

- INF2820 — 18-FEB-10 (oe@ifi.uio.no) -

Quite Abstractly: Three Approaches to Search

(Heuristic) Look-Ahead

- Peek at input tape one or more positions beyond the current symbol;
- try to work out (or 'guess') which branch to take for current symbol.

Parallel Computation

- Assume unlimited computational resources, i.e. any number of cpus;
- copy FSA, remaining input, and current state \rightarrow multiple branches.

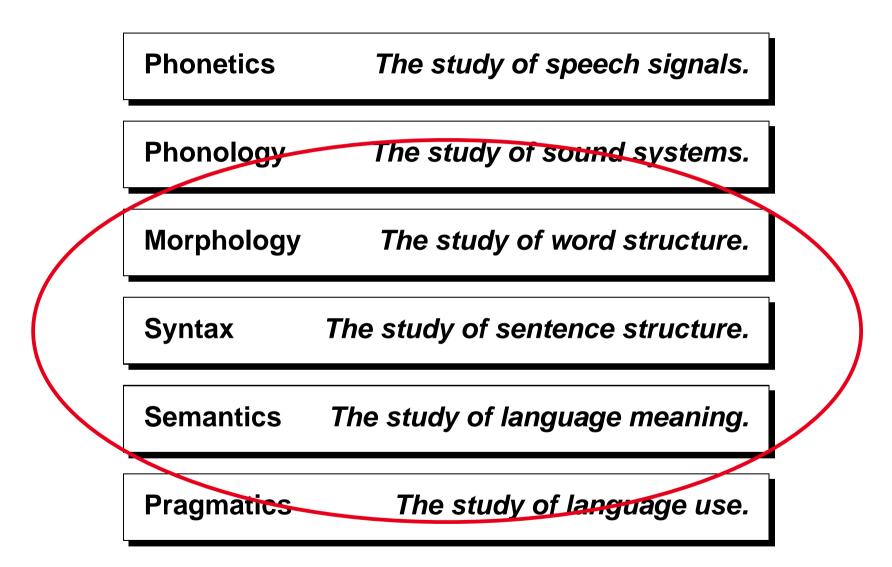
Backtracking (Or Back-Up)

- Keep track of possibilities (*choice points*) and remaining candidates;
- 'leave a bread crumb', go down one branch; eventually come back.

INF2820 - 18-FEB-10 (oe@ifi.uio.no)

NFSA Recognition (From Jurafsky & Martin, 2008)

```
procedure nd-recognize(tape, fsa) \equiv
        agenda \leftarrow \{ \langle 0, 0 \rangle \};
 2
 3
        do
 4
          current \leftarrow pop(agenda);
          state \leftarrow first(current);
 5
          index \leftarrow second(current);
 6
 7
          if (index = length(tape) and state is final state) then
 8
            return accept;
 9
          fi
10
          for(next in fsa.transitions[state, tape[index]]) do
11
            agenda \leftarrow agenda \cup \{\langle next, index + 1 \rangle\}
12
          od
13
          if agenda is empty then return reject; fi
14
        od
15
     end
```



Some Areas of Descriptive Grammar

Phonetics	The study of speech signals.
Phonology	The study of sound systems.
Morphology	The study of word structure.
Syntax	The study of sentence structure.
Semantics	The study of language meaning.
Pragmatics	The study of language use.

Some Areas of Descriptive Grammar

- INF2820 — 18-FEB-10 (oe@ifi.uio.no)

Tokenization: Finding the Basic Building Blocks

Mr. Browne, who's prime minister, arrived.

- INF2820 - 18-FEB-10 (oe@ifi.uio.no) -

Finite-State Machines — Morphology (8)

Tokenization: Finding the Basic Building Blocks

Mr. Browne, who's prime minister, arrived.

He eats chocolate, candy (i.e. sugar), etc.

— INF2820 — 18-FEB-10 (oe@ifi.uio.no) -

Finite-State Machines — Morphology (8)

Morphological Categories (1 of 3)

Parts of Speech (PoS)

noun (N)	cat, dog, neighbours,	
verb (V)	barks, chased, was,	
adjective (Adj)	fierce, angry, black, young,	
adverb (Adv)	quickly, probably, not,	
determiner (D)	a, the, my, that,	
preposition (P)	of, by, on, at, under,	
pronoun (Pro)	she, mine, those, what,	
conjunction (C)	and, neither nor, because,	

How to discover the inventory of categories?

A Quick Tour of English Morphology

- INF2820 — 18-FEB-10 (oe@ifi.uio.no) -

Finite-State Machines — Morphology (10)

Morphological Categories (2 of 3)

Parts of Speech (PoS)

noun (N)	cat, dog, neighbours,	
verb (V)	barks, chased, was,	
adjective (Adj)	fierce, angry, black, young,	
adverb (Adv)	quickly, probably, not,	
determiner (D)	a, the, my, that,	
preposition (P)	of, by, on, at, under,	
pronoun (Pro)	she, mine, those, what,	
conjunction (C)	and, neither nor, because,	

- **Paradigm** set of word forms, e.g. {*bark*, *barks*, *barking*, *barked* };
- **Unit Categories** dimensions structuring a paradigm *internally*;
- Paradigm Categories properties *common* to all paradigm units.

INF2820 - 18-FEB-10 (oe@ifi.uio.no) -

Morphological Categories (3 of 3)

Number — Person — Case — Gender

That dog barks. — Those dogs bark. I bark. — You bark. — They bark. — Sam shaved himself. We bark. — You bark. — Those dogs bark. I saw her. — She saw me. — My dog barked.

...

How many distinct verb forms according to number and person?

Tense — Aspect — Mood

The dog barks. — The dog barked — The dog will bark. The dog has barked. — The dog is barking. If I were a carpenter, ...

- INF2820 — 18-FEB-10 (oe@ifi.uio.no) -

Finite-State Machines — Morphology (12)