S [LTOP -
INDEX e
def_g-rel . .
NP VP prpstn_m_rel LBL hy “dog_n_rel” fg{lk_v_re}ll
Dm | RELS < LBL hl ARGO T5 LBL h8 RGO eg >
v MARG hs| |RSTRhg| |ARGO 5 Py 2
The dog parked |HCONS (h =4 ho, he =4 hs) |

Computational Linguistics
(INF2820 — Parsing)

S—NPVP; S—SPP; S— VP

Stephan Oepen

Universitetet i Oslo

oe@ifi.uio.no

e Trees can be encoded as sequences (dominance plus precedence):

4 s I
(S (NP kim) NP/\VP
(VP (V adored) | T
(NP snow))) kim |V NP
| |
adores snow

N /

e the first () element (at each level) represents the tree root (or mother);

e all other elements (i.e. the rest ()) correspond to immediate daughters.

e Formally, a context-free grammar (CFG) is a quadruple: (C,, P, S)
e (' is the set of categories (aka non-terminals), e.g. {S, NP, VP, V};
e Y is the vocabulary (aka terminals), e.g. {Kim, snow, saw, in};

e P is a set of category rewrite rules (aka productions), e.qg.

/S—>NPVP\

VP — V NP
NP — Kim
NP — snow
V — saw

o /
e S € C'Is the start symbol, a filter on complete (‘sentential’) results;

e foreachrule‘a — 61,05,....0, e P.acCand g, e CUX; 1 <1 <n.

/S—>NPVP N
VP — V NP

VP — VP PP

NP — NP PP

PP — P NP

NP — Kim | snow | Oslo
V — saw

\P—>in Y

All Complete Derivations
e are rooted in the start symbol S;

e label Internal nodes with cate-
gories € (', leafs with words € 3;;

e instantiate a grammar rule € P at
each local subtree of depth one.

S
NP VP
Kim VP PP

N N
V NP P NP

saw snow in Oslo

‘ N
snow P NP

in oslo

Control Structure

e top-down: given a parsing goal «, use all grammar rules that rewrite «;
e successively instantiate (extend) the right-hand sides of each rule;

e for each j3; in the RHS of each rule, recursively attempt to parse j3;;

e termination: when « is a prefix of the input string, parsing succeeds.

(Intermediate) Results

e Each result records a (partial) tree and remaining input to be parsed,;
e complete results consume the full input string and are rooted in S,

e whenever a RHS is fully instantiated, a new tree is built and returned,;

e all results at each level are combined and successively accumulated.

/,(defun parse (input goal)
(if (equal (first input) goal)
(let ((edge (make-edge :category (first input))))
(list (make-parse :edge edge :input (rest input))))
(loop
for rule in (rules-deriving goal)

_ append (extend-parse (rule-lhs rule) nil (rule-rhs rule) input)))))

\

/,(defun extend-parse (goal analyzed unanalyzed input)
(if (null unanalyzed)
(let ((edge (make-edge :category goal :daughters analyzed)))
(list (make-parse :edge edge :input input)))
(loop
for parse in (parse input (first unanalyzed))
append (extend-parse
goal (append analyzed (list (parse-edge parse)))
(rest unanalyzed)

_ (parse-input parse))))))

A Closer Look at the Calling Sequence

4 SSP(18): (parse ’(kim adored snow) ’s) A

parse(): input: (KIM ADORED SNOW); goal: S
parse(): input: (KIM ADORED SNOW); goal: NP
parse(): input: (KIM ADORED SNOW); goal: KIM
parse(): input: (KIM ADORED SNOW); goal: SANDY
parse(): input: (KIM ADORED SNOW); goal: SNOW
parse(): input: (ADORED SNOW); goal: VP
parse(): input: (ADORED SNOW); goal: V
parse(): input: (ADORED SNOW); goal: LAUGHED
parse(): input: (ADORED SNOW); goal: ADORED
parse(): input: (ADORED SNOW); goal: V
parse(): input: (ADORED SNOW); goal: LAUGHED
parse(): input: (ADORED SNOW); goal: ADORED
parse(): input: (SNOW); goal: NP

.)

INF2820 — 11-MAR-10 (0e@ifi.uio.no)

Parsing with Context-Free Grammars (7)

Quantifying the Complexity of the Parsing Task

Recursive Function Calls Kim adores snow (in Oslo)" I

1500000

n trees calls
1250000 - 0 1 46
1000000 - 1 2 170

2 5 593
750000 3 14 2,093

4 42 7,539
P0R000” 5 | 132 27,627
E0000 6 429 102,570

7 1430 384,566

0e " . . 8 4862 1,452,776
Number of Prepositional Phrases (n) ' '

INF2820 11-MAR-10 (0e@ifi.uio.no)

Parsing with Context-Free Grammars (8)

Memoization: Remember Earlier Results

Dynamic Programming
e The function call (parse (adored snow) V) executes two times;

e memoization —record parse () results for each set of arguments;

— requires abstract data type, efficient indexing on input and goal.

//éooooo h
175000 - | e original algorithm
150000 4 | © memoized variant
125000 A
100000 A
75000 A
50000 -
25000 - QA””/Ay/////A
0e —o * & S |
1 2 3 4 5 6 7 8
Number of Prepositional Phrases (n) D

INF2820 — 11-MAR-10 (0e@ifi.uio.no)

Parsing with Context-Free Grammars (9)

Top-Down vs. Bottom-Up Parsing

Top-Down (Goal-Oriented)

e Left recursion (e.g. a rule like VP — VP PP’) causes infinite recursion:;

e grammar conversion technigues (eliminating left recursion) exist, but will
typically be undesirable for natural language processing applications;

— assume bottom-up as basic search strategy for remainder of the course.

Bottom-Up (Data-Oriented)

e unary (left-recursive) rules (e.g. ‘NP — NP’) would still be problematic;

e lack of parsing goal: compute all possible derivations for, say, the input
adores snow; however, it is ultimately rejected since it is not sentential,

e avallability of partial analyses desirable for, at least, some applications.

INF2820 — 11-MAR-10 (0e@ifi.uio.no)

Parsing with Context-Free Grammars (10)

Chart Parsing — Specialized Dynamic Programming

Basic Notions
e Use chart to record partial analyses, indexing them by string positions;

e count inter-word vertices; CKY: chart row Is start, column end vertex;

e treat multiple ways of deriving the same category for some substring as
equivalent; pursue only once when combining with other constituents.

Key Benefits
e Dynamic programming (memoization): avoid recomputation of results;

e efficient indexing of constituents: no search by start or end positions;

e compute parse forest with exponential ‘extension’ in polynomial time.

INF2820 — 11-MAR-10 (0e@ifi.uio.no)

Parsing with Context-Free Grammars (11)

Bounding Ambiguity — The Parse Chart

e For many substrings, more than one way of deriving the same category;

NPs:fi|/@H B H B F-HAHBB B=A-8/08

e parse forest — a single item represents multiple trees [Billot & Lang, 89].

INF2820 — 11-MAR-10 (0e@ifi.uio.no)

Parsing with Context-Free Grammars (12)

The CKY (Cocke, Kasami, & Younger) Algorithm

for (0 <14 < |input|) do
chartj; ;1) « {a|a — input; € P};
for (1 <1 < |input|) do
for (0 <7 < |input| —[) do
for (1 <j<l)do
if (0 — G182 € P A By €charty;) A B2 € charty, ;141) then
chart ; ;1) < charty; ;1) U {a};

o)
C10,2] — [0.4] + [1.2] o e S S
0,5] « [0,1] + [1,5] ! VIVPL VP
0,5] +—[0,2] + 2,5 2 NP NP
:0,5: — :0,3: + :3,5: 2 > | pp

L 0,5 — [0,4] + |4,5] y
4 NP

INF2820 11-MAR-10 (0e@ifi.uio.no)

Parsing with Context-Free Grammars (13)

Limitations of the CKY Algorithm

Built-In Assumptions
e Chomsky Normal Form grammars: a — 515, or a — v (6; € C, v € Y);

e breadth-first (aka exhaustive): always compute all values for each cell;

e rigid control structure: bottom-up, left-to-right (one diagonal at a time).

Generalized Chart Parsing
e Liberate order of computation: no assumptions about earlier results;

e active edges encode partial rule instantiations, ‘waiting’ for additional
(adjacent and passive) constituents to complete: (1,2, VP — V e NPJ;

e parser can fill in chart cells in any order and guarantee completeness.

INF2820 — 11-MAR-10 (0e@ifi.uio.no)

Parsing with Context-Free Grammars (14)

