

Computational Linguistics (INF2820 — Beyond CFGs)

Stephan Oepen

Universitetet i Oslo

oe@ifi.uio.no

Limitations of the CKY Algorithm

Built-In Assumptions

- Chomsky Normal Form grammars: $\alpha \to \beta_1 \beta_2$ or $\alpha \to \gamma$ ($\beta_i \in C$, $\gamma \in \Sigma$);
- breadth-first (aka exhaustive): always compute all values for each cell;
- rigid control structure: bottom-up, left-to-right (one diagonal at a time).

Generalized Chart Parsing

- Liberate order of computation: no assumptions about earlier results;
- active edges encode partial rule instantiations, 'waiting' for additional (adjacent and passive) constituents to complete: [1, 2, VP → V • NP];
- parser can fill in chart cells in *any* order and guarantee completeness.

Generalized Chart Parsing

- The parse *chart* is a two-dimensional matrix of *edges* (aka chart items);
- an edge is a (possibly partial) rule instantiation over a substring of input;
- the chart indexes edges by start and end string position (aka vertices);
- dot in rule RHS indicates degree of completion: $\alpha \rightarrow \beta_1 \dots \beta_{i-1} \bullet \beta_i \dots \beta_n$
- active edges (aka incomplete items) partial RHS: $[1, 2, VP \rightarrow V \bullet NP]$;
- *passive* edges (aka *complete* items) full RHS: $[1, 3, VP \rightarrow V NP \bullet]$;

The Fundamental Rule $[i, j, \alpha \rightarrow \beta_1 \dots \beta_{i-1} \bullet \beta_i \dots \beta_n] + [j, k, \beta_i \rightarrow \gamma^+ \bullet]$ $\mapsto [i, k, \alpha \rightarrow \beta_1 \dots \beta_i \bullet \beta_{i+1} \dots \beta_n]$

(Even) More Active Edges

	0	1	2	3	
0	$\begin{array}{c} S \rightarrow \bullet NP VP \\ NP \rightarrow \bullet NP PP \\ NP \rightarrow \bullet kim \end{array}$	$\begin{array}{c} S \rightarrow NP \bullet VP \\ NP \rightarrow NP \bullet PP \\ NP \rightarrow kim \bullet \end{array}$		$S \mathop{\rightarrow} NP VP \bullet$	
1		$\begin{array}{c} VP \rightarrow \bullet VP PP \\ VP \rightarrow \bullet V NP \\ V \rightarrow \bullet \text{ adored} \end{array}$	$VP \rightarrow V \bullet NP \\ V \rightarrow adored \bullet$	$\begin{array}{c} VP \rightarrow VP \bullet PP \\ VP \rightarrow V NP \bullet \end{array}$	
2			$\begin{array}{c} NP \to \bullet NP PP \\ NP \to \bullet snow \end{array}$	$\begin{array}{c} NP \rightarrow NP \bullet PP \\ NP \rightarrow snow \bullet \end{array}$	
3					

- Include all grammar rules as *epsilon* edges in each $chart_{[i,i]}$ cell.
- after initialization, apply *fundamental rule* until fixpoint is reached.

Recap: Grammatical Categories

Number — Person — Case — Gender

That dog barks. — Those dogs bark. I bark. — You bark. — They bark. — Sam shaved himself. We bark. — You bark. — Those dogs bark. I saw her. — She saw me. — My dog barked.

Tense — Aspect — Mood

The dog barks. — The dog barked — The dog will bark. The dog has barked. — The dog is barking. If I were a carpenter, ...

- INF2820 — 25-MAR-10 (oe@ifi.uio.no)

Limitations of (Our) Context-Free Grammars

Agreement and Valency (For Example)					

. . .

Agreement and Valency in Context-Free Grammars

- INF2820 — 25-MAR-10 (oe@ifi.uio.no)

Towards Unification Grammar (7)

A Really Complicated Language

[...] omdat ik Henk de nijlpaarden zag voeren

- INF2820 - 25-MAR-10 (oe@ifi.uio.no)

Towards Unification Grammar (8)

A Really Complicated Language

[...] omdat ik Jan Henk de nijlpaarden zag helpen voeren .

_____ INF2820 — 25-MAR-10 (oe@ifi.uio.no) -

More Terminology: Grammatical Functions

Licensing — Government — Agreement

The dog barks. — *The dog a cat barks — *The dog barks a cat. Kim depends on Sandy — *Kim depends in Sandy The class meets on Thursday in 508 at 12:15.

- **Constituent** node in analysis tree (terminal or instantiation of rule);
- Head licenses additional constituents and can govern their form;
- **Specifier** precedes head, singleton, nominative case, agreement;
- **Complement** post-head, licensed and governed, order constraints;
- Adjunct 'free' modifier, optional, may iterate, designated position;
- **Government** directed: a property of c_1 determines the form of c_2 ;
- Agreement bi-directional: co-occurrence of properties on c_1 and c_2 .

A Highly Ambiguous Example

- INF2820 - 25-MAR-10 (oe@ifi.uio.no)

Towards Unification Grammar (10)

Structured Categories in a Unification Grammar

- All (constituent) categories in the grammar are typed feature structures;
- specific TFS configurations may correspond to 'traditional' categories;
- \rightarrow labels like 'S' or 'NP' are mere abbreviations, not elements of the theory.

Towards Unification Grammar (11)

Interaction of Lexicon and Phrase Structure Schemata

