
S

NP

Det

The

N

dog

VP

V

barked



























LTOP h1

INDEX e2

RELS

〈







prpstn m rel

LBL h1

MARG h3





















def q rel

LBL h4

ARG0 x5

RSTR h6

BODY h7





















“dog n rel”

LBL h8

ARG0 x5

















“bark v rel”

LBL h9

ARG0 e2

ARG1 x5











〉

HCONS 〈h3 =q h9, h6 =q h8〉



























Algorithms for AI and NLP
(INF4820 — Parsing)
S −→ NP VP; NP −→ Det N; VP −→ V NP

Stephan Oepen and Jonathon Read

Universitetet i Oslo

{ oe | jread }@ifi.uio.no

A Tool Towards Understanding: (Formal) Grammar
✬

✫

✩

✪

Wellformedness

• Kim was happy because passed the exam.

• Kim was happy because final grade was an A.

• Kim was happy when she saw on television.

inf4820 — -nov- (oe@ifi.uio.no)

Context-Free Grammar and Parsing (2)

A Tool Towards Understanding: (Formal) Grammar
✬

✫

✩

✪

Wellformedness

• Kim was happy because passed the exam.

• Kim was happy because final grade was an A.

• Kim was happy when she saw on television.
✬

✫

✩

✪

Meaning

• Kim gave Sandy the book.

• Kim gave the book to Sandy.

• Sandy was given the book by Kim.

inf4820 — -nov- (oe@ifi.uio.no)

Context-Free Grammar and Parsing (2)

A Tool Towards Understanding: (Formal) Grammar
✬

✫

✩

✪

Wellformedness

• Kim was happy because passed the exam.

• Kim was happy because final grade was an A.

• Kim was happy when she saw on television.
✬

✫

✩

✪

Meaning

• Kim gave Sandy the book.

• Kim gave the book to Sandy.

• Sandy was given the book by Kim.
✬

✫

✩

✪

Ambiguity

• Kim saw the astronomer with the telescope.

• Have her report on my desk by Friday!

inf4820 — -nov- (oe@ifi.uio.no)

Context-Free Grammar and Parsing (2)

A Grossly Simplified Example

The Grammar of Spanish
✬

✫

✩

✪

S→ NP VP

VP→ V NP

VP→ VP PP

PP→ P NP

NP→ “nieve”

NP→ “Juan”

NP→ “Oslo”

V→ “amó”

P→ “en”
✓
✒

✏
✑Juan amó nieve en Oslo

inf4820 — -nov- (oe@ifi.uio.no)

Context-Free Grammar and Parsing (3)

A Grossly Simplified Example

The Grammar of Spanish
✬

✫

✩

✪

S→ NP VP

VP→ V NP

VP→ VP PP

PP→ P NP

NP→ “nieve”

NP→ “Juan”

NP→ “Oslo”

V→ “amó”

P→ “en”

S

NP

Juan

VP

VP

V

amó

NP

nieve

PP

P

en

NP

Oslo

✓
✒

✏
✑Juan amó nieve en Oslo

inf4820 — -nov- (oe@ifi.uio.no)

Context-Free Grammar and Parsing (3)

A Grossly Simplified Example

The Grammar of Spanish
✬

✫

✩

✪

S→ NP VP {VP (NP) }

VP→ V NP {V (NP) }

VP→ VP PP {PP (VP) }

PP→ P NP {P (NP) }

NP→ “nieve” { snow }

NP→ “Juan” { John }

NP→ “Oslo” {Oslo }

V→ “amó” {λbλa adore (a, b) }

P→ “en” {λdλc in (c, d) }

S

NP

Juan

VP

VP

V

amó

NP

nieve

PP

P

en

NP

Oslo

✓
✒

✏
✑Juan amó nieve en Oslo

inf4820 — -nov- (oe@ifi.uio.no)

Context-Free Grammar and Parsing (3)

Meaning Composition (Grossly Simplified, Still)

{ in (adore (John , snow) , Oslo) }

{ John }

Juan

{ λa in (adore (a, snow) , Oslo) }

{ λa adore (a, snow) }

{ λbλa adore (a, b) }

amó

{ snow }

nieve

{ λc in (c, Oslo) }

{ λdλc in (c, d) }

en

{ Oslo }

Oslo

✓
✒

✏
✑VP→ V NP { V (NP) }

inf4820 — -nov- (oe@ifi.uio.no)

Context-Free Grammar and Parsing (4)

Another Interpretation — Structural Ambiguity

S

NP

Juan

VP

V

amó

NP

NP

nieve

PP

P

en

NP

Oslo

✓
✒

✏
✑NP→ NP PP {PP (NP) }

inf4820 — -nov- (oe@ifi.uio.no)

Context-Free Grammar and Parsing (5)

Mildly Mathematically: Context-Free Grammars

• Formally, a context-free grammar (CFG) is a quadruple: 〈C, Σ, P, S〉

• C is the set of categories (aka non-terminals), e.g. {S, NP, VP, V};

• Σ is the vocabulary (aka terminals), e.g. {Kim, snow, saw, in};

• P is a set of category rewrite rules (aka productions), e.g.✬

✫

✩

✪

S→ NP VP
VP→ V NP
NP→ Kim
NP→ snow
V→ saw

• S ∈ C is the start symbol, a filter on complete (‘sentential’) results;

• for each rule ‘α→ β1, β2, ..., βn’ ∈ P : α ∈ C and βi ∈ C ∪ Σ; 1 ≤ i ≤ n.

inf4820 — -nov- (oe@ifi.uio.no)

Context-Free Grammar and Parsing (6)

Parsing: Recognizing the Language of a Grammar

✬

✫

✩

✪

S→ NP VP
VP→ V | V NP | VP PP
NP→ NP PP
PP→ P NP
NP→ Kim | snow | Oslo
V→ saw
P→ in

All Complete Derivations
• are rooted in the start symbol S;

• label internal nodes with cate-
gories ∈ C, leafs with words ∈ Σ;

• instantiate a grammar rule ∈ P at
each local subtree of depth one.

S

NP

Kim

VP

VP

V

saw

NP

snow

PP

P

in

NP

Oslo

S

NP

Kim

VP

V

saw

NP

NP

snow

PP

P

in

NP

oslo

inf4820 — -nov- (oe@ifi.uio.no)

Context-Free Grammar and Parsing (7)

Recursive Descend: A Na ı̈ve Parsing Algorithm

Control Structure

• top-down: given a parsing goal α, use all grammar rules that rewrite α;

• successively instantiate (extend) the right-hand sides of each rule;

• for each βi in the RHS of each rule, recursively attempt to parse βi;

• termination: when α is a prefix of the input string, parsing succeeds.

(Intermediate) Results

• Each result records a (partial) tree and remaining input to be parsed;

• complete results consume the full input string and are rooted in S;

• whenever a RHS is fully instantiated, a new tree is built and returned;

• all results at each level are combined and successively accumulated.

inf4820 — -nov- (oe@ifi.uio.no)

Context-Free Grammar and Parsing (8)

The Recursive Descent Parser
✬

✫

✩

✪

(defun parse (input goal)

(if (equal (first input) goal)

(let ((edge (make-edge :category (first input))))

(list (make-parse :edge edge :input (rest input))))

(loop

for rule in (rules-deriving goal)

append (extend-parse (rule-lhs rule) nil (rule-rhs rule) input))))

✬

✫

✩

✪

(defun extend-parse (goal analyzed unanalyzed input)

(if (null unanalyzed)

(let ((edge (make-edge :category goal :daughters analyzed)))

(list (make-parse :edge edge :input input)))

(loop

for parse in (parse input (first unanalyzed))

append (extend-parse

goal (append analyzed (list (parse-edge parse)))

(rest unanalyzed)

(parse-input parse)))))

inf4820 — -nov- (oe@ifi.uio.no)

Context-Free Grammar and Parsing (9)

Quantifying the Complexity of the Parsing Task

1 2 3 4 5 6 7 8

Number of Prepositional Phrases (n)

0

250000

500000

750000

1000000

1250000

1500000

Recursive Function Calls

• • • • • •
•

•

•

Kim adores snow (in Oslo)n

n trees calls

0 1 46

1 2 170

2 5 593

3 14 2,093

4 42 7,539

5 132 27,627

6 429 102,570

7 1430 384,566

8 4862 1,452,776
...

inf4820 — -nov- (oe@ifi.uio.no)

Context-Free Grammar and Parsing (10)

Top-Down vs. Bottom-Up Parsing

Top-Down (Goal-Oriented)

• Left recursion (e.g. a rule like ‘VP→ VP PP’) causes infinite recursion;

• grammar conversion techniques (eliminating left recursion) exist, but will
typically be undesirable for natural language processing applications;

→ assume bottom-up as basic search strategy for remainder of the course.

Bottom-Up (Data-Oriented)

• unary (left-recursive) rules (e.g. ‘NP→ NP’) would still be problematic;

• lack of parsing goal: compute all possible derivations for, say, the input
adores snow ; however, it is ultimately rejected since it is not sentential;

• availability of partial analyses desirable for, at least, some applications.

inf4820 — -nov- (oe@ifi.uio.no)

Context-Free Grammar and Parsing (11)

Chart Parsing — Specialized Dynamic Programming

Basic Notions

• Use chart to record partial analyses, indexing them by string positions;

• count inter-word vertices; CKY: chart row is start, column end vertex;

• treat multiple ways of deriving the same category for some substring as
equivalent ; pursue only once when combining with other constituents.

Key Benefits

• Dynamic programming (memoization): avoid recomputation of results;

• efficient indexing of constituents: no search by start or end positions;

• compute parse forest with exponential ‘extension’ in polynomial time.

inf4820 — -nov- (oe@ifi.uio.no)

Context-Free Grammar and Parsing (12)

Bounding Ambiguity — The Parse Chart

• For many substrings, more than one way of deriving the same category;

• NPs: 1 | 2 | 3 | 6 | 7 | 9 ; PPs: 4 | 5 | 8 ; 9 ≡ 1 + 8 | 6 + 5 ;

• parse forest — a single item represents multiple trees [Billot & Lang, 89].

✬

✫

✩

✪2 3 4 5 6 7

boys with hats from France

1 2 3

4 5

6 7

8

9

inf4820 — -nov- (oe@ifi.uio.no)

Context-Free Grammar and Parsing (13)

The CKY (Cocke, Kasami, & Younger) Algorithm

for (0 ≤ i < |input |) do
chart [i,i+1]← {α |α→ input i ∈ P};

for (1 ≤ l < |input |) do
for (0 ≤ i < |input | − l) do

for (1 ≤ j ≤ l) do
if (α→ β1 β2 ∈ P ∧ β1 ∈ chart [i,i+j] ∧ β2 ∈ chart [i+j,i+l+1]) then
chart [i,i+l+1]← chart [i,i+l+1] ∪ {α};

✬

✫

✩

✪

[0,2]← [0,1] + [1,2]
· · ·

[0,5]← [0,1] + [1,5]
[0,5]← [0,2] + [2,5]
[0,5]← [0,3] + [3,5]
[0,5]← [0,4] + [4,5]

1 2 3 4 5

0 NP S S

1 V VP VP

2 NP NP

3 P PP

4 NP

inf4820 — -nov- (oe@ifi.uio.no)

Context-Free Grammar and Parsing (14)

Limitations of the CKY Algorithm

Built-In Assumptions

• Chomsky Normal Form grammars: α→ β1β2 or α→ γ (βi ∈ C, γ ∈ Σ);

• breadth-first (aka exhaustive): always compute all values for each cell;

• rigid control structure: bottom-up, left-to-right (one diagonal at a time).

Generalized Chart Parsing

• Liberate order of computation: no assumptions about earlier results;

• active edges encode partial rule instantiations, ‘waiting’ for additional
(adjacent and passive) constituents to complete: [1, 2, VP→ V •NP];

• parser can fill in chart cells in any order and guarantee completeness.

inf4820 — -nov- (oe@ifi.uio.no)

Context-Free Grammar and Parsing (15)

