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So, What Actually is AI and NLP

(IBM Watson beats long-time Jeopardy! champions; 2011)
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So, What Actually is AI and NLP

→ (young) interdisciplinary science: language, computing, cognition;

→ (again) culturally and commercially relevant for ‘knowledge society’.
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What Makes Natural Language a Hard Problem?

✬

✫

✩

✪

< Den andre veien mot Bergen er kort. --- 12 x 30 x 25 = 25

> The other path towards Bergen is short. {0.58} (1:1:0).

> The other road towards Bergen is short. {0.56} (1:0:0).

> The second road towards Bergen is short. {0.55} (2:0:0).

> That other path towards Bergen is a card. {0.54} (0:1:0).

> That other road towards Bergen is a card. {0.54} (0:0:0).

> The second path towards Bergen is short. {0.51} (2:1:0).

> The other road against Bergen is short. {0.48} (1:2:0).

> The second road against Bergen is short. {0.48} (2:2:0).

· · ·

> Short is the other street towards Bergen. {0.33} (1:4:0).

> Short is the second street towards Bergen. {0.33} (2:4:0).

· · ·
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Scraped Off the Internet

The other way to Bergen is short.

the road to the other bergen is short .

Den other roads against Boron Gene are short.

Other one autobahn against Mountains am abrupt.
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INF4820: A Very High-Level Perspective
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Efficient and Scalable Algorithms and Data Structures for
Searching (Probabilistically) Weighted Solution Spaces



Well, Who is Actually Working on This?

In the next three to five years, [...] mobile devices [...]
will become prevalent. [...] Desired technologies

will soon replace menus and graphic user interfaces with
natural-language interfaces. — People so much want to

speak English to their computer. (Steve Ballmer, December 2005)

IBM has unveiled the details of its plans to build a computing
system that can understand complex questions and answer with
enough precision and speed to compete on America’s favorite

quiz show, Jeopardy!. (IBM Press Release, April 27, 2009)
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Families of Language Processing Tasks

Speech Recognition and Synthesis

Summarization & Text Simplification

(High Quality) Machine Translation

Information Extraction — Text Understanding

Grammar & Controlled Language Checking

Natural Language Dialogue Systems
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Families of Language Processing Tasks

Speech Recognition and Synthesis

Summarization & Text Simplification

(High Quality) Machine Translation

Information Extraction — Text Understanding

Grammar & Controlled Language Checking

Natural Language Dialogue Systems

Focus on
Accuracy

Use of
Semantics

(Mostly)

English
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The Holy Grail: Balancing Robustness and Precision

System Robustness

O
ut
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tP
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INF4880 — What We Are About to Do (and Why)
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Comments on Course & Background Literature
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Why Common-Lisp for (Symbolic) Programming?

• Arguably most widely used language for ‘symbolic’ computation;

• easy to learn: extremely simple syntax; straightforward semantics;

• a rich language: multitude of built-in data types and operations;

• full standardization; Common-Lisp has been stable for a decade;

• Ruby was a Lisp originally, in theory. [Yukihiro Matsumoto; 2006];

→ for our purposes, (at least) as good a choice as any other language.

n! ≡



















1 for n = 0

n × (n − 1)! for n > 0

✬

✫

✩

✪

(defun ! (n)

(if (equal n 0)

1

(* n (! (- n 1)))))
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Lisp is worth learning for the profound enlightenment
experience you will have when you finally get it;

that experience will make you a better programmer for the rest
of your days, even if you never actually use Lisp itself a lot.

[Eric Raymond, 2001]



Common-Lisp: Syntax

• Numbers: 42, 3.1415, 1/3;

• strings: "foo", "42", "(bar)";

• symbols: pi, t, nil, foo, FoO;

• lists: (1 2 3 4 5), (), nil,

(defun ! (n)

(if (equal n 0)

1

(* n (! (- n 1)))))

• Lisp manipulates symbolic ex-
pressions (known as ‘sexps’);

• sexps come in two fundamental
flavours, atoms and lists;

• atoms include numbers, strings,
symbols, structures, et al.;

• sexps are used to represent
both program data and program
code;

• rather few ‘magic’ characters:
‘(’, ‘)’, ‘"’, ‘’’, ‘;’, ‘#’, ‘|’, ‘‘’;

• all operators use prefix notation;

• symbol case does not matter.
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Common-Lisp: Semantics (aka Evaluation)

• Constants (e.g. numbers and strings, t and nil) evaluate to themselves:

? 3.1415 → 3.1415 ? "foo" → "foo" ? t → t ? nil → nil

• symbols evaluate to their associated value (if any):

? pi → 3.141592653589793

? foo → error (unless a value was assigned earlier)

• lists are function calls; the first element is interpreted as an operator and
invoked with the values of all remaining elements as its arguments:

? (* pi (+ 2 2)) → 12.566370614359172;

• the quote() operator (abbreviated as ‘’’) suppresses evaluation:

? (quote (+ 2 2)) → (+ 2 2)

? ’foo → foo
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A Couple of List Operations

• first() and rest() destructure lists; cons() builds up new lists:

? (first ’(1 2 3)) → 1

? (rest ’(1 2 3)) → (2 3)

? (first (rest ’(1 2 3))) → 2

? (rest (rest (rest ’(1 2 3)))) → nil

? (cons 0 ’(1 2 3)))) → (0 1 2 3)

? (cons 1 (cons 2 (cons 3 nil))) → (1 2 3)

• many additional list operations (derivable from the above primitives):

? (list 1 2 3) → (1 2 3)

? (append ’(1 2 3) ’(4 5 6)) → (1 2 3 4 5 6)

? (length ’(1 2 3)) → 3

? (reverse ’(1 2 3)) → (3 2 1)
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Assigning Values — ‘Generalized Variables’

• defparameter() declares a ‘global variable’ and assigns a value:

? (defparameter *foo* 42) → *FOO*

? *foo* → 42

• setf() associates (‘assigns’) a value to a symbol (a ‘variable’):

? (setf *foo* (+ *foo* 1)) → 43

? *foo* → 43

? (setf *foo* ’(1 1 3)) → (1 1 3)

• setf() can also alter the values associated to ‘generalized variables’:

? (setf (first (rest *foo*)) 2) → 2

? *foo* → (1 2 3)

? (setf (cons 0 *foo*) 2) → error
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Predicates — Conditional Evaluation

• A predicate tests some condition and evaluates to a boolean truth value;
nil indicates false — anything non-nil (including t) indicates true:

? (listp ’(1 2 3)) → t

? (null (rest ’(1 2 3))) → nil

? (or (not (numberp *foo*)) (and (>= *foo* 0) (< *foo* 42)))

→ t

? (equal (cons 1 (cons 2 (cons 3 nil))) ’(1 2 3)) → t

? (eq (cons 1 (cons 2 (cons 3 nil))) ’(1 2 3)) → nil

• conditional evaluation proceeds according to a boolean truth condition:

? (if (numberp *foo*)

(+ *foo* 42)

(first (rest *foo*)))

→ 2
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Defining New Functions

• defun() associates a function definition (‘body ’) with a symbol:

(defun name (parameter1 ... parametern) body)

? (defun ! (n)

(if (equal n 0)

1

(* n (! (- n 1)))))

→ !

? (! 0) → 1

? (! 5) → 120

• when a function is called, actual arguments (e.g. ‘0’ and ‘5’) are bound
to the function parameter(s) (i.e. ‘n’) for the scope of the function body;

• a function evaluates to the value of the last sexp in the function body.
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