S [LTOP By
INDEX e,
def_g-rel))
NP VP prpstn_m_rel LBL hy “dog_n._rel” Ll‘);{‘k_v_refll
De{\N | RELS < LBL hy ARGO x5 LBL hs oo 69 >
v MARG h3| |RSTRhg| |ARGO x5 ey 2
| | BODY h,7 x5
The dog parked |HCONS (h3 =, ho, he =g hs)

Algorithms for Al and NLP
(INFA4820 — Welcome)

(defun! (n) (if (equaln0) 1 (* n (! (- n 1)))))

Stephan Oepen and Jonathon Read

Universitetet i Oslo

{oe]|jread }@ifi.uio.no

So, What Actually is Al and NLP

INF4820 — 26-AUG-11 (0e@ifi.uio.no)

Algorithms for Al and NLP (2)

So, What Actually is Al and NLP

(2001: A Space Odyssey; HAL 9000; 1968)

INF4820 — 26-AUG-11 (0e@ifi.uio.no)

Algorithms for Al and NLP (2)

So, What Actually is Al and NLP

(IBM Watson beats long-time Jeopardy! champions; 2011)

INF4820 — 26-AUG-11 (0e@ifi.uio.no)

Algorithms for Al and NLP (2)

So, What Actually is Al and NLP

=2 IL L et

— (young) interdisciplinary science: language, computing, cognition;

— (again) culturally and commercially relevant for ‘knowledge society’.

INF4820 — 26-AUG-11 (0e@ifi.uio.no)

Algorithms for Al and NLP (2)

What Makes Natural Language a Hard Problem?

4 N
< Den andre veien mot Bergen er kort. —-—- 12 x 30 x 25 = 25
> The other path towards Bergen is short. {0.58} (1:1:0).
> The other road towards Bergen is short. {0.56} (1:0:0).
> The second road towards Bergen is short. {0.55} (2:0:0).
> That other path towards Bergen is a card. {0.54} (0:1:0).
> That other road towards Bergen is a card. {0.54} (0:0:0).
> The second path towards Bergen is short. {0.51} (2:1:0).
> The other road against Bergen is short. {0.48} (1:2:0).
> The second road against Bergen is short. {0.48} (2:2:0).

\4

Short is the other street towards Bergen. {0.33} (1:4:0).
> Short is the second street towards Bergen. {0.33} (2:4:0).

N /

INF4820 — 26-AUG-11 (0e@ifi.uio.no)

Algorithms for Al and NLP (3)

What Makes Natural Language a Hard Problem?

4)
< Den andre veien mot Bergen er kort. —-—- 12 x 30 x 25 = 25
> The other path towards Bergen is short. {0.58} (1:1:0).
> The other road towards Bergen is short. {0.56} (1:0:0).
> The second road towards Bergen is short. {0.55} (2:0:0).
> That other path towards Bergen is a card. {0.54} (0:1:0).
> That other road towards Bergen is a card. {0.54} (0:0:0).
> The second path towards Bergen is short. {0.51} (2:1:0).
> Th _ _ ‘ - _ : A I
> Th Scraped Off the Internet) .
> Sh The other way to Bergen is short. 0).
> Sh the road to the other bergen is short . 1:0) .
o Den other roads against Boron Gene are short.
\ Other one autobahn against Mountains am abrupt. /

INF4820 — 26-AUG-11 (0e@ifi.uio.no)

Algorithms for Al and NLP (3)

INF4820: A Very High-Level Perspective

Probabilities

Algorithms for Al and NLP (4)

INF4820 — 26-AUG-11 (0e@ifi.uio.no

INF4820: A Very High-Level Perspective

Probabilities

Efficient and Scalable Algorithms and Data Structures for
Searching (Probabilistically) Weighted Solution Spaces

INF4820 — 26-AUG-11 (0e@ifi.uio.no)

Algorithms for Al and NLP (4)

Well, Who is Actually Working on This?

In the next three to five years, [...] mobile devices [...]
will become prevalent. [...] Desired technologies
will soon replace menus and graphic user interfaces with
natural-language interfaces. — People so much want to
speak English to their computer. (sieve Baimer, December 2005)

INF4820 — 26-AUG-11 (0e@ifi.uio.no)

Algorithnms for Al and NLP (5)

Well, Who is Actually Working on This?

In the next three to five years, [...] mobile devices [...]
will become prevalent. [...] Desired technologies
will soon replace menus and graphic user interfaces with
natural-language interfaces. — People so much want to
speak English to their computer. (sieve Baimer, December 2005)

IBM has unveiled the details of its plans to build a computing
system that can understand complex questions and answer with
enough precision and speed to compete on America’s favorite

CIUiZ ShOW, Jeopardy! » (IBM Press Release, April 27, 2009)

INF4820 — 26-AUG-11 (0e@ifi.uio.no)

Algorithms for Al and NLP (5)

Families of Language Processing Tasks

Speech Recognition and Synthesis |
Summarization & Text Simplification |
(High Quality) Machine Translation |
Information Extraction — Text Understanding I
Grammar & Controlled Language Checking |
Natural Language Dialogue Systems |

INF4820 — 26-AUG-11 (0e@ifi.uio.no)

Algorithms for Al and NLP (6)

Families of Language Processing Tasks

Speech Recognition and Synthesis |

Stmmarization & Text Simplificatio

(High Quality) Machine Translation |

Information Extraction — Text Understanding I
rammar & Controlled Language Checking ‘

Natural Language Dialogue Systems |

INF4820 — 26-AUG-11 (0e@ifi.uio.no)

Algorithms for Al and NLP (6)

Families of Language Processing Tasks

Speech Recognition and Synthesis |

marization & Text Simplificatio

(High Quality) Machine Translation
FOCUSOND —— 0 — 1 Useof

ACCUracCy |nformation Extraction — Text Understanding Semantics
rammar & Cont age Checking
(Mostly)
Natural Lang| English e Systems

INF4820 — 26-AUG-11 (0e@ifi.uio.no)

Algorithms for Al and NLP (6)

The Holy Grail: Balancing Robustness and Precision

Output Precision

System Robustness

INF4820 — 26-AUG-11 (0e@ifi.uio.no)

Algorithms for Al and NLP (7)

The Holy Grail: Balancing Robustness and Precision

rule-based
approaches

Output Precision

statistical
approaches

System Robustness

INF4820 — 26-AUG-11 (0e@ifi.uio.no)

Algorithms for Al and NLP (7)

The Holy Grail: Balancing Robustness and Precision

Output Precision

—~———— ftybid —

rule-based approaches >

approaches \

statistical
approaches

System Robustness

INF4820 — 26-AUG-11 (0e@ifi.uio.no)

Algorithms for Al and NLP (7)

INFA4880 — What We Are About to Do (and Why)

INF4820 — 26-AUG-11 (0e@ifi.uio.no)

Algorithnms for Al and NLP (8)

Comments on Course & Background Literature

INF4820 — 26-AUG-11 (0e@ifi.uio.no)

Algorithnms for Al and NLP (9)

Why Common-Lisp for (Symbolic) Programming?

e Arguably most widely used language for ‘symbolic’ computation;

e easy to learn: extremely simple syntax; straightforward semantics;
e a rich language: multitude of built-in data types and operations;

e full standardization;, Common-Lisp has been stable for a decade;

e Ruby was a Lisp originally, in theory. [Yukihiro Matsumoto; 2006];

— for our purposes, (at least) as good a choice as any other language.

! ¢ _0 /(defun I (n))
nl = orn = (if (equal n 0)
nx(n-—1)"! forn>0 1

_ (n (! (-n 1)))>)/

INF4820 — 26-AUG-11 (0e@ifi.uio.no)

Algorithms for Al and NLP (10)

Why Common-Lisp for (Symbolic) Programming?

e Arguably most widely used language for ‘symbolic’ computation;

e easy to learn: extremely simple syntax; straightforward semantics;
e a rich language: multitude of built-in data types and operations;

e full standardization;, Common-Lisp has been stable for a decade;

e Ruby was a Lisp originally, in theory. [Yukihiro Matsumoto; 2006];

— for our purposes, (at least) as good a choice as any other language.

. Lisp is worth learning for the profound enlightenment N
experience you will have when you finally get Iit;
that experience will make you a better programmer for the rest
of your days, even if you never actually use Lisp itself a lot.
. [Eric Raymond, 2001]

J

INF4820 — 26-AUG-11 (0e@ifi.uio.no)

Algorithms for Al and NLP (10)

Common-LIs

e Numbers: 42, 3.1415, 1/3;
e strings: "foo", "42", "(bar) ",
e symbols: pi, t, nil, foo, FoO0;

o lists: (1 2 3 4 5), O, nil,

(defun ! (n)
(if (equal n 0)
1
(xn (! (-n 1)))))

0. Syntax

e Lisp manipulates symbolic ex-
pressions (known as ‘sexps’);

e sexps come in two fundamental
flavours, atoms and lists;

e atoms include numbers, strings,
symbols, structures, et al.;

e Sexps are used to represent
both program data and program
code;

e rather few ‘magic’ characters:
L(i’ l)1, i"1, L’i’ i;1, L#i’ L|1’ i(1;

e all operators use prefix notation;

e symbol case does not matter.

INF4820 — 26-AUG-11 (0e@ifi.uio.no)

Algorithms for Al and NLP (11)

Common-Lisp: Semantics (aka Evaluation)

e Constants (e.g. numbers and strings, t and nil) evaluate to themselves:

? 3.1415 — 3.1415 ? "foo" — "foo" ?7t—t ? nil — nil

e symbols evaluate to their associated value (if any):

? pi — 3.141592653589793
? foo — error (unless a value was assigned eatrlier)

e lists are function calls; the first element is interpreted as an operator and
iInvoked with the values of all remaining elements as its arguments:

? (x pi (+ 2 2)) — 12.566370614359172;

e the quote () operator (abbreviated as ‘’’) suppresses evaluation:
? (quote (+ 2 2)) — (+ 2 2)

? >foo — foo

INF4820 — 26-AUG-11 (0e@ifi.uio.no)

Algorithms for Al and NLP (12)

A Couple of List Operations

e first () and rest () destructure lists; cons () builds up new lists:

? (first ’(1 2 3)) — 1

? (rest (1 2 3)) — (2 3)

? (first (rest (1 2 3))) — 2

? (rest (rest (rest ’(1 2 3)))) — nil

? (cons 0 °(1 23)))—(0123)

? (cons 1 (cons 2 (cons 3 nil))) — (1 2 3)

e many additional list operations (derivable from the above primitives):

? (list 1 2 3) — (1 2 3)

? (append (1 2 3) ’(456)) (12345 6)
? (length (1 2 3)) — 3

? (reverse (1 2 3)) - (32 1)

INF4820 — 26-AUG-11 (0e@ifi.uio.no)

Algorithms for Al and NLP (13)

Assigning Values — ‘Generalized Variables’

e defparameter () declares a ‘global variable’ and assigns a value:
? (defparameter *foox 42) — *F00x
? xfoo*x — 42

e setf () associates (‘assigns’) a value to a symbol (a ‘variable’):

? (setf *foox (+ *xfoox 1)) — 43
? xfoox — 43
? (setf *foox (11 3)) — (11 3)

e setf () can also alter the values associated to ‘generalized variables’:

? (setf (first (rest *xfoox)) 2) — 2
? xfoox — (1 2 3)
? (setf (cons 0 *xfoox) 2) — error

INF4820 — 26-AUG-11 (0e@ifi.uio.no)

Algorithms for Al and NLP (14)

Predicates — Conditional Evaluation

e A predicate tests some condition and evaluates to a boolean truth value;
nil indicates false — anything non-nil (including t) indicates true:

? (listp (1 2 3)) — t
? (null (rest (1 2 3))) — nil

? (or (not (numberp *foox)) (and (>= *foo* 0) (< xfoox 42)))

— t

? (equal (cons 1 (cons 2 (cons 3 nil))) (1 2 3)) — ¢t
? (eq (cons 1 (cons 2 (cons 3 nil))) (1 2 3)) — nil

e conditional evaluation proceeds according to a boolean truth condition:

? (if (numberp *foo*)
(+ xfoox 42)
(first (rest *foox)))

INF4820 — 26-AUG-11 (0e@ifi.uio.no)

Algorithms for Al and NLP (15)

Defining New Functions

e defun () associates a function definition (‘body’) with a symbol:

(defun name (parametery ... parametern) body)

? (defun ! (n)
(if (equal n 0)
1
(*n (! (-1n1)))))

?2 (1 0)—1
? (! 5) — 120

e When a function is called, actual arguments (e.g. ‘0’ and ‘5’) are bound
to the function parameter(s) (i.e. ‘n’) for the scope of the function body;

e a function evaluates to the value of the last sexp in the function body.

INF4820 — 26-AUG-11 (0e@ifi.uio.no)

Algorithms for Al and NLP (16)

