
S

NP

Det

The

N

dog

VP

V

barked



























LTOP h1

INDEX e2

RELS

〈







prpstn m rel

LBL h1

MARG h3





















def q rel

LBL h4

ARG0 x5

RSTR h6

BODY h7





















“dog n rel”

LBL h8

ARG0 x5

















“bark v rel”

LBL h9

ARG0 e2

ARG1 x5











〉

HCONS 〈h3 =q h9, h6 =q h8〉



























Algorithms for AI and NLP
(INF4820 — Welcome)

(defun ! (n) (if (equal n 0) 1 (* n (! (- n 1)))))

Stephan Oepen and Jonathon Read

Universitetet i Oslo

{ oe | jread }@ifi.uio.no



So, What Actually is AI and NLP

(2001: A Space Odyssey; HAL 9000; 1968)inf4820 — -aug- (oe@ifi.uio.no)

Algorithms for AI and NLP (2)



So, What Actually is AI and NLP

(2001: A Space Odyssey; HAL 9000; 1968)

inf4820 — -aug- (oe@ifi.uio.no)

Algorithms for AI and NLP (2)



So, What Actually is AI and NLP

(IBM Watson beats long-time Jeopardy! champions; 2011)

inf4820 — -aug- (oe@ifi.uio.no)

Algorithms for AI and NLP (2)



So, What Actually is AI and NLP

→ (young) interdisciplinary science: language, computing, cognition;

→ (again) culturally and commercially relevant for ‘knowledge society’.

inf4820 — -aug- (oe@ifi.uio.no)

Algorithms for AI and NLP (2)



What Makes Natural Language a Hard Problem?

✬

✫

✩

✪

< Den andre veien mot Bergen er kort. --- 12 x 30 x 25 = 25

> The other path towards Bergen is short. {0.58} (1:1:0).

> The other road towards Bergen is short. {0.56} (1:0:0).

> The second road towards Bergen is short. {0.55} (2:0:0).

> That other path towards Bergen is a card. {0.54} (0:1:0).

> That other road towards Bergen is a card. {0.54} (0:0:0).

> The second path towards Bergen is short. {0.51} (2:1:0).

> The other road against Bergen is short. {0.48} (1:2:0).

> The second road against Bergen is short. {0.48} (2:2:0).

· · ·

> Short is the other street towards Bergen. {0.33} (1:4:0).

> Short is the second street towards Bergen. {0.33} (2:4:0).

· · ·

inf4820 — -aug- (oe@ifi.uio.no)

Algorithms for AI and NLP (3)



What Makes Natural Language a Hard Problem?

✬

✫

✩

✪

< Den andre veien mot Bergen er kort. --- 12 x 30 x 25 = 25

> The other path towards Bergen is short. {0.58} (1:1:0).

> The other road towards Bergen is short. {0.56} (1:0:0).

> The second road towards Bergen is short. {0.55} (2:0:0).

> That other path towards Bergen is a card. {0.54} (0:1:0).

> That other road towards Bergen is a card. {0.54} (0:0:0).

> The second path towards Bergen is short. {0.51} (2:1:0).

> The other road against Bergen is short. {0.48} (1:2:0).

> The second road against Bergen is short. {0.48} (2:2:0).

· · ·

> Short is the other street towards Bergen. {0.33} (1:4:0).

> Short is the second street towards Bergen. {0.33} (2:4:0).

· · ·

Scraped Off the Internet

The other way to Bergen is short.

the road to the other bergen is short .

Den other roads against Boron Gene are short.

Other one autobahn against Mountains am abrupt.

inf4820 — -aug- (oe@ifi.uio.no)

Algorithms for AI and NLP (3)



INF4820: A Very High-Level Perspective

inf4820 — -aug- (oe@ifi.uio.no)

Algorithms for AI and NLP (4)



INF4820: A Very High-Level Perspective

inf4820 — -aug- (oe@ifi.uio.no)

Algorithms for AI and NLP (4)

Efficient and Scalable Algorithms and Data Structures for
Searching (Probabilistically) Weighted Solution Spaces



Well, Who is Actually Working on This?

In the next three to five years, [...] mobile devices [...]
will become prevalent. [...] Desired technologies

will soon replace menus and graphic user interfaces with
natural-language interfaces. — People so much want to

speak English to their computer. (Steve Ballmer, December 2005)

IBM has unveiled the details of its plans to build a computing
system that can understand complex questions and answer with
enough precision and speed to compete on America’s favorite

quiz show, Jeopardy!. (IBM Press Release, April 27, 2009)

inf4820 — -aug- (oe@ifi.uio.no)

Algorithms for AI and NLP (5)



Well, Who is Actually Working on This?

In the next three to five years, [...] mobile devices [...]
will become prevalent. [...] Desired technologies

will soon replace menus and graphic user interfaces with
natural-language interfaces. — People so much want to

speak English to their computer. (Steve Ballmer, December 2005)

IBM has unveiled the details of its plans to build a computing
system that can understand complex questions and answer with
enough precision and speed to compete on America’s favorite

quiz show, Jeopardy!. (IBM Press Release, April 27, 2009)

inf4820 — -aug- (oe@ifi.uio.no)

Algorithms for AI and NLP (5)



Families of Language Processing Tasks

Speech Recognition and Synthesis

Summarization & Text Simplification

(High Quality) Machine Translation

Information Extraction — Text Understanding

Grammar & Controlled Language Checking

Natural Language Dialogue Systems

inf4820 — -aug- (oe@ifi.uio.no)

Algorithms for AI and NLP (6)



Families of Language Processing Tasks

Speech Recognition and Synthesis

Summarization & Text Simplification

(High Quality) Machine Translation

Information Extraction — Text Understanding

Grammar & Controlled Language Checking

Natural Language Dialogue Systems

inf4820 — -aug- (oe@ifi.uio.no)

Algorithms for AI and NLP (6)



Families of Language Processing Tasks

Speech Recognition and Synthesis

Summarization & Text Simplification

(High Quality) Machine Translation

Information Extraction — Text Understanding

Grammar & Controlled Language Checking

Natural Language Dialogue Systems

Focus on
Accuracy

Use of
Semantics

(Mostly)

English

inf4820 — -aug- (oe@ifi.uio.no)

Algorithms for AI and NLP (6)



The Holy Grail: Balancing Robustness and Precision

System Robustness

O
ut

pu
tP

re
ci

si
on

inf4820 — -aug- (oe@ifi.uio.no)

Algorithms for AI and NLP (7)



The Holy Grail: Balancing Robustness and Precision

System Robustness

O
ut

pu
tP

re
ci

si
on

1980s

rule-based
approaches

1990s

statistical
approaches

inf4820 — -aug- (oe@ifi.uio.no)

Algorithms for AI and NLP (7)



The Holy Grail: Balancing Robustness and Precision

System Robustness

O
ut

pu
tP

re
ci

si
on

1980s

rule-based
approaches

1990s

statistical
approaches

hybrid

approaches

inf4820 — -aug- (oe@ifi.uio.no)

Algorithms for AI and NLP (7)



INF4880 — What We Are About to Do (and Why)

inf4820 — -aug- (oe@ifi.uio.no)

Algorithms for AI and NLP (8)



Comments on Course & Background Literature

inf4820 — -aug- (oe@ifi.uio.no)

Algorithms for AI and NLP (9)



Why Common-Lisp for (Symbolic) Programming?

• Arguably most widely used language for ‘symbolic’ computation;

• easy to learn: extremely simple syntax; straightforward semantics;

• a rich language: multitude of built-in data types and operations;

• full standardization; Common-Lisp has been stable for a decade;

• Ruby was a Lisp originally, in theory. [Yukihiro Matsumoto; 2006];

→ for our purposes, (at least) as good a choice as any other language.

n! ≡



















1 for n = 0

n × (n − 1)! for n > 0

✬

✫

✩

✪

(defun ! (n)

(if (equal n 0)

1

(* n (! (- n 1)))))

inf4820 — -aug- (oe@ifi.uio.no)

Algorithms for AI and NLP (10)



Why Common-Lisp for (Symbolic) Programming?

• Arguably most widely used language for ‘symbolic’ computation;

• easy to learn: extremely simple syntax; straightforward semantics;

• a rich language: multitude of built-in data types and operations;

• full standardization; Common-Lisp has been stable for a decade;

• Ruby was a Lisp originally, in theory. [Yukihiro Matsumoto; 2006];

→ for our purposes, (at least) as good a choice as any other language.

n! ≡



















1 for n = 0

n × (n − 1)! for n > 0

✬

✫

✩

✪

(defun ! (n)

(if (equal n 0)

1

(* n (! (- n 1)))))

inf4820 — -aug- (oe@ifi.uio.no)

Algorithms for AI and NLP (10)

Lisp is worth learning for the profound enlightenment
experience you will have when you finally get it;

that experience will make you a better programmer for the rest
of your days, even if you never actually use Lisp itself a lot.

[Eric Raymond, 2001]



Common-Lisp: Syntax

• Numbers: 42, 3.1415, 1/3;

• strings: "foo", "42", "(bar)";

• symbols: pi, t, nil, foo, FoO;

• lists: (1 2 3 4 5), (), nil,

(defun ! (n)

(if (equal n 0)

1

(* n (! (- n 1)))))

• Lisp manipulates symbolic ex-
pressions (known as ‘sexps’);

• sexps come in two fundamental
flavours, atoms and lists;

• atoms include numbers, strings,
symbols, structures, et al.;

• sexps are used to represent
both program data and program
code;

• rather few ‘magic’ characters:
‘(’, ‘)’, ‘"’, ‘’’, ‘;’, ‘#’, ‘|’, ‘‘’;

• all operators use prefix notation;

• symbol case does not matter.

inf4820 — -aug- (oe@ifi.uio.no)

Algorithms for AI and NLP (11)



Common-Lisp: Semantics (aka Evaluation)

• Constants (e.g. numbers and strings, t and nil) evaluate to themselves:

? 3.1415 → 3.1415 ? "foo" → "foo" ? t → t ? nil → nil

• symbols evaluate to their associated value (if any):

? pi → 3.141592653589793

? foo → error (unless a value was assigned earlier)

• lists are function calls; the first element is interpreted as an operator and
invoked with the values of all remaining elements as its arguments:

? (* pi (+ 2 2)) → 12.566370614359172;

• the quote() operator (abbreviated as ‘’’) suppresses evaluation:

? (quote (+ 2 2)) → (+ 2 2)

? ’foo → foo

inf4820 — -aug- (oe@ifi.uio.no)

Algorithms for AI and NLP (12)



A Couple of List Operations

• first() and rest() destructure lists; cons() builds up new lists:

? (first ’(1 2 3)) → 1

? (rest ’(1 2 3)) → (2 3)

? (first (rest ’(1 2 3))) → 2

? (rest (rest (rest ’(1 2 3)))) → nil

? (cons 0 ’(1 2 3)))) → (0 1 2 3)

? (cons 1 (cons 2 (cons 3 nil))) → (1 2 3)

• many additional list operations (derivable from the above primitives):

? (list 1 2 3) → (1 2 3)

? (append ’(1 2 3) ’(4 5 6)) → (1 2 3 4 5 6)

? (length ’(1 2 3)) → 3

? (reverse ’(1 2 3)) → (3 2 1)

inf4820 — -aug- (oe@ifi.uio.no)

Algorithms for AI and NLP (13)



Assigning Values — ‘Generalized Variables’

• defparameter() declares a ‘global variable’ and assigns a value:

? (defparameter *foo* 42) → *FOO*

? *foo* → 42

• setf() associates (‘assigns’) a value to a symbol (a ‘variable’):

? (setf *foo* (+ *foo* 1)) → 43

? *foo* → 43

? (setf *foo* ’(1 1 3)) → (1 1 3)

• setf() can also alter the values associated to ‘generalized variables’:

? (setf (first (rest *foo*)) 2) → 2

? *foo* → (1 2 3)

? (setf (cons 0 *foo*) 2) → error

inf4820 — -aug- (oe@ifi.uio.no)

Algorithms for AI and NLP (14)



Predicates — Conditional Evaluation

• A predicate tests some condition and evaluates to a boolean truth value;
nil indicates false — anything non-nil (including t) indicates true:

? (listp ’(1 2 3)) → t

? (null (rest ’(1 2 3))) → nil

? (or (not (numberp *foo*)) (and (>= *foo* 0) (< *foo* 42)))

→ t

? (equal (cons 1 (cons 2 (cons 3 nil))) ’(1 2 3)) → t

? (eq (cons 1 (cons 2 (cons 3 nil))) ’(1 2 3)) → nil

• conditional evaluation proceeds according to a boolean truth condition:

? (if (numberp *foo*)

(+ *foo* 42)

(first (rest *foo*)))

→ 2

inf4820 — -aug- (oe@ifi.uio.no)

Algorithms for AI and NLP (15)



Defining New Functions

• defun() associates a function definition (‘body ’) with a symbol:

(defun name (parameter1 ... parametern) body)

? (defun ! (n)

(if (equal n 0)

1

(* n (! (- n 1)))))

→ !

? (! 0) → 1

? (! 5) → 120

• when a function is called, actual arguments (e.g. ‘0’ and ‘5’) are bound
to the function parameter(s) (i.e. ‘n’) for the scope of the function body;

• a function evaluates to the value of the last sexp in the function body.

inf4820 — -aug- (oe@ifi.uio.no)

Algorithms for AI and NLP (16)


