

Computational Linguistics (INF2820 — Beyond CFGs)

Wilhelm Stephan Oepen & Jan Tore Lønning

Universitetet i Oslo

oe@ifi.uio.no

INF2880 — What We Are About to Do (and Why)

Course Outline

- Extend understanding of (natural) language as a system of rules;
- learn how to *formalize* grammars through typed feature structures;
- solve practical exercises: immediate gratification (risk of late hours).

Three Interacting Components

- formal syntax learn and practice (basic) notions of formal syntactic theory; by and large framework-independent and common sense;
- grammar engineering formalize linguistic theories with complex interactions of multiple phenomena; implementation and debugging;
- **processing** understand standard parsing algorithms; unification of typed feature structures; fundamentals of unification-based parsing.

Grammar Engineering from a CS Perspective

Implementation Goals

- Translate linguistic analysis into computational formalism: formal model;
- computational grammar provides mapping between form and meaning;
- assign correct analyses to grammatical, reject ungrammatical inputs;
- parsing and generation algorithms: apply mapping in either direction.

Analogy to (Object-Oriented) Programming

- Computational system with observable behavior: immediately testable;
- typed feature structures as a specialized (OO) programming language;
- make sure that all the pieces fit together; revise-test-revise-test ...

Comments on Background Literature

Natural Language Processing and Computational Grammar

- (1) Jurafsky, Daniel and Martin, James H.: Speech and Language Processing. An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition (2nd Edition). Upper Saddle River, NJ: Prentice Hall (2008).
- (2) Sag, Ivan A. Tom Wasow, and Emily M. Bender: Syntactic Theory. A Formal Introduction (2nd Edition). Stanford, CA: CSLI Publications (2003);
- (3) Copestake, Ann: *Implementing Typed Feature Structure Grammars.* Stanford, CA: CSLI Publications (2001).

Selected chapters from (2) and (3) are available as a 'course pack' (*kompendium*) from Akademika; in store starting Thursday, March 17.

Course Logistics Ahead of Us (And a Moral Appeal)

- INF2820 — 15-MAR-11 (oe@ifi.uio.no)

Towards Unification Grammar (5)

Recap: How to Define Grammatical Categories

Word Classes or Parts of Speech (PoS)

noun (N)	cat, dog, neighbours,
verb (V)	adore, barks, chased, was,
adjective (A)	fierce, angry, black, young,
adverb (Adv)	quickly, probably, not,
determiner (D)	a, the, my, that,
preposition (P)	of, by, on, at, under,
pronoun (Pron)	she, mine, those, what,
conjunction (C)	and, neither nor, because,

	(cat)		(bark)		fierce	
the	dog	Kim likes to	chase dogs	the {	angry	cat
	(*adore)		([*] cat		[*] quickly	

Recap: More Grammatical Categories

Number — Person — Case — Gender

That dog barks. — Those dogs bark. I bark. — You bark. — They bark. — Sam shaved himself. We bark. — You bark. — Those dogs bark. I saw her. — She saw me. — My dog barked.

Tense — Aspect — Mood

The dog barks. — The dog barked — The dog will bark. The dog has barked. — The dog is barking. If I were a carpenter, ...

- INF2820 — 15-MAR-11 (oe@ifi.uio.no)

Limitations of (Our) Context-Free Grammars

Agreement and Valency (For Example)
That dog barks.
*That dogs barks.
*Those dogs barks.
The dog chased a cat.
*The dog barked a cat.
*The dog chased.
*The dog chased a cat my neighbours.
The cat was chased by a dog.
*The cat was chased of a dog.
ine eat nae enaced er a degr

. . .

Agreement and Valency in Context-Free Grammars

- INF2820 — 15-MAR-11 (oe@ifi.uio.no)

Towards Unification Grammar (7)

Structured Categories in a Unification Grammar

- All categories in the grammar are (typed) feature structures (aka TFSs);
- specific TFS configurations may correspond to 'traditional' categories;
- \rightarrow labels like 'S' or 'NP' are mere abbreviations, not elements of the theory.

Towards Unification Grammar (8)

Preliminary Words on Specifiers and Complements

- INF2820 — 15-MAR-11 (oe@ifi.uio.no)

Interaction of Lexicon and Phrase Structure Schemata

- INF2820 — 15-MAR-11 (oe@ifi.uio.no)