
0.0.1 Dynamic Symbols

With the new input modes, it is possible to modify a feature structure node
using an arbitrary string, e.g., to store the surface form of a preprocessed token.
To be able to do that in cheap , atomic types are created dynamically which may
have no features and are direct subtypes of the topmost type. As a consequence,
they only unify with themselves and *top*.

This functionality can also be used internally, say, to store arbitrary integer
values in under a feature path.

At the moment, the dynamic symbols are removed when a new sentence is
processed.

0.1 Input modes for cheap

0.1.1 YY-Mode

A token in YY input mode has the following form:

(<ID>, <STARTPOS>, <ENDPOS>,
<PATHNR1> <PATHNR2> ... <PATHNRn>,
"STEM" "SURFACE" ,
<INFLECTION_POSITION>, "INFLR1" "INFLR2" ... "INFLRm",
"POS1" <POS_PROB1> "POS2" <POS_PROB2> ... "POSk" <POS_PROBk>)

The characters “(”, “)”, and “,” are part of the syntax, the tokens itself are
separated by whitespace (Space, Tab).

<ID>, <STARTPOS>, <ENDPOS>, <PATHNRi> and <INFLECTION_POSITION> are
integer values.

There are two ways of assigning numbers to the start and end positions,
called the positions and the counts view.

In the positions view, you can imaging the words lying between increasingly
numbered poles, so the start position of the first token is zero, its end position
one, which is the starting position of the second token, and so on:

(3,0,1,1,"a",0,"null")(4,1,2,1,"good",0,"null")(5,2,3,1,"example",0,"null")

In this mode, start and end positions of one token may not be equal, because
this would mean that the token has length zero. Tokens do not need to have
length one, and there may also be gaps between the start and end position of
adjacent tokens, which are automatically bridged unless there is another token
spanning over the gap. But if the input encodes a word graph, it is important
that all edges that are left-adjacent to some token have the same end position,
because otherwise only the rightmost token will be connected to its neighbor.

The counts view is modeled after a situation were the component that pro-
duces the input labels the words with their character counts. The string “a
good example” would therefore result in a list of tokens similar to the following
(the gaps result from counting the white space characters, too):

(0,1,1,1,"a",0,"null")(1,3,6,1,"good",0,"null")(2,8,14,1,"example",0,"null")

1

(74, 12, 13,

1,

"fisch" "Fische", 0,

"inflr-pl-nom-sg-dat",

"PROPER_NOUN" 0.91

"VERB_IMPERATIV" 0.09)

(74, 12, 13, 1,

"Fische", 0,

"null",

"PROPER_NOUN" 0.91

"VERB_IMPERATIV" 0.09)

(93, 3, 6, 1,

"$NE_Loc" "New York",

0,

"zero",

"PROPER_NOUN" 1.0)

fully analysed do morphology and
lexicon access

Named Entity with
type name

Figure 1: Examples of YY input tokens

In this mode, the start position of the next right adjacent token always has
to be bigger than the end position of its left neighbor, but, as in the first token,
the start and end position of one token may be equal (which means the string
has length one). Considering gaps and word graphs, the same remarks as above
apply.

The POS tags are optional, if they are not given, the last comma (“,”) has
to be omitted. The <POS_PROBABILITYi> values are C style (double) numbers.

The <ID> values have to be unique. <STARTPOS> and <ENDPOS> can get
arbitrary integer values, as long as adjacency of the appropriate tokens is en-
sured. This input format is designed for word graphs, therefore, input tokens
may overlap.

The <PATHNRi> values are use to encode a viable paths in the word graph,
if this feature is not used, it is feasible to give it the same value for all tokens,
say 1.

Tokens, whose STEM consists only of characters that are specified as
punctuation-characters in the .set file are skipped by the parser.

The "SURFACE" string is optional. If this string is omitted, the double quotes
should also be omitted.

There are special values for "INFLR1" that also imply m = 1:

"zero" No inflection

"null" Do the morphological analysis internally. In this case, the string in
"STEM" is analysed, therefore, this string has to be the surface form.
"SURFACE" may and should be omitted in this case.

To specify named entities or other pre-analyzed tokens, "STEM" should con-
tain the HPSG type name instead, which has to start with the character specified
as class-name-char in the settings, or, if this is not set, with ’$’.

0.1.2 XML input mode

XML input mode is very similar to YY input mode. It allows you to specify
only simple tokens that get analysed internally by cheap or to put all kinds
of preprocessing information cheap can handle into the input directly, namely
POS, morphology, lexicon lookup and multi-component entries.

It extends the YY mode in that it allows to have structured input tokens to
provide a means to encode, say, named entities resulting from base tokens. It

2

also allows to specify modifications to feature structures (coming from lexicon
entries.

The example in figure 2 illustrates most of the available features. Tokens
W0 and W1 are not analysed at all by cheap because the (boolean) constant
attribute is yes. The default value of this attribute is no, which means that the
token W3 will be analysed by all of the activated preprocessing modules in cheap
.

<?xml version="1.0" encoding="ISO-8859-1" standalone="no" ?>

<!DOCTYPE pet-input-chart

SYSTEM "/home/cl-home/kiefer/src/pet/doc/pic.dtd">

<pet-input-chart>

<w id="W0" cstart="1" cend="3" constant="yes">

<surface>Kim</surface>

</w>

<w id="W1" cstart="5" cend="9" constant="yes">

<surface>Novak</surface>

</w>

<ne id="NE0" prio="1.0">

<ref id="W0">

<ref id="W1">

<pos tag="PN" prio="1.0">

<typeinfo id="TNE0" baseform="no">

<stem>$generic_name</stem>

<fsmod path="SYNSEM.LOCAL.HEAD.FORM" value="Kim Novak"/>

</typeinfo>

</ne>

<w id="W2" cstart="11" cend="16" constant="yes">

<surface>sleeps</surface>

<pos tag="VVFIN" prio="7.80000e-1"/>

<pos tag="NN" prio="2.30000e-2"/>

<typeinfo id="W1A1">

<stem>sleep</stem>

<infl name="$third_sg_fin_verb_infl_rule"/>

</typeinfo>

<typeinfo id="W1A2">

<stem>sleep</stem>

<infl name="$plur_noun_infl_rule"/>

</typeinfo>

</w>

<w id="W3" cstart="18" cend="22">

<surface>badly</surface>

<pos tag="ADV" prio="1.00000e+1"/>

</w>

</pet-input-chart>

Figure 2: Example of an XML input chart

Token NE0 is an example of a complex token referencing a sequence of two
base tokens. Its typeinfo directly gives the HPSG type name whose feature
structure should be used as lexical item in cheap . While in YY mode this
was triggered by a leading special character, in XML the attribute baseform
decides if the string enclosed by the <stem> tag is to be interpreted as lex-
ical base form or as type name. The default value of baseform is yes. In
this token, the surface string is unified into the feature structure under path
SYNSEM.LOCAL.HEAD.FORM, which is specified with the <fsmod> tag. The value
of an <fsmod> may be an arbitrary string. cheap will add a dynamic symbol if

3

the string is not a known type or symbol name.
Every <typeinfo> tag potentially generates a lexical item (if it leads to a

valid lexical feature structure). Thus, there will be two readings for the token
W2 (“sleeps”), whereas internal analysis of the surface form has been inhibited.
This need not be necessarily so. It is possible to provide external analyses and
have a <w> token also being analysed internally if the constant flag is omitted
or set to no.

The XML tag <surface> encloses the surface string, <pos> and <path> tags
are analogous to YY mode; multiple <infl> rules in a <typeinfo> will have to
be considered from first to last.

XML input mode can be used in two different ways, either by specifying a
file name containing the XML data (preferably with correct XML header and
DTD or DTD URL specification) or by giving the XML data directly.

If the XML data is put directly into the standard input, it must start with a
valid XML header <?xml version="1.0" ... ?> with no leading whitespace,
because recognition of the header triggers the reading of XML from standard
input. The end of the data is marked by an empty line (two consecutive newline
characters), therefore, the data itself, including an eventually given DTD, may
not contain empty lines.

0.2 Settings And Options

0.2.1 Use of generic lexicon entries

If an input token did not generate a chart edge that is useful for syntax parsing, it
normally triggers an error of the form “no lexicon entry for . . .”. If the default-
les option was set, generic entries, selected on the basis of POS information,
are tried to avoid this. The way they are selected is defined by the posmapping
setting.

If the input word has one more more POS tags associated to it, these are
looked up in the posmapping table: this table is a list of pairs (tag, gle) where
gle is the name of a type or instance with a status that is in the generic-
lexentry-status-values list. A non-empty posmapping table will filter all
generic entries that are not explicitly licensed by a POS tag.1

0.2.2 Packing and Restrictor

The restrictor is specified by giving a list of features or paths (features are
just paths of length one). The structure at the end of a specified path will
be replaced by a maximally underspecified appropriate feature structure. The
paths list should not contain two paths where one is a sub-path of the other.
Although this does not result in a program error, it may give wrong or unwanted
results, and it does not seem to be a meaningful restrictor specification anyway.

The restrictor is only applied to rules and lexicon entries when the grammar
is read in. It is not applied during parsing for efficiency reasons. If paths of
length more than one are used, this may result in feature structures that contain
paths which should in principle be deleted. This is due to the fact that these
paths can be constructed using other, non-restricted sub-paths and coreferences.

1This paragraph is partly taken from the ERG settings file.

4

The packing option gets a bit-masked argument (add the appropriate value
to set the bit):

bit 0 (= 1) equi packing: Only items with equivalent feature structures will
be packed, which should make unification in the unpacking step unneces-
sary

bit 1 (= 2) proactive packing:

bit 2 (= 4) retroactive packing:

bit 7 (= 128) unpacking of results is disabled

For additional information about packing, see [?].

0.2.3 Quick Check Path Computation

There are three options to compute quick check paths: compute-qc computes
quick check paths for unification and subsumption, if packing is enabled, while
compute-qc-unif and compute-qc-subs only compute the paths for the ap-
propriate operation. All three take an optional argument to determine the file
containing the result. The default path for that file is /tmp/qc.tdl.

0.2.4 Tokenizer Selection

The tokenizer used in cheap is selected with the option tok, which requires the
tokenizer name as argument. Possible values (in version 0.99.5) are:

string the plain old string tokenizer, mainly tuned to English

yy YY input mode, see section 0.1.1

yy counts YY input mode, using counts, see section 0.1.1

xml XML input mode, see section 0.1.2

xml counts XML input mode, using counts, see section 0.1.2

If a wrong or no name is given, the string tokenizer is activated by default.

0.2.5 Result Selection

If no complete parse of the whole input could be found, cheap will normally
produce no MRS output. With the option partial, cheap attempts to select a
set of “best” partial results that cover the input as good as possible and produce
MRS output for them.

The option result gets a (required) integer argument that specifies the
maximal number of results that will be produced if a full parse could be found.

5

0.2.6 Result Dumps

There are two file dump formats supported by cheap.
The first dumps the whole chart with feature structures after each parse

in a form that was formerly used for input to Java programs, and which is
activated with the option jxchgdump. This option gets as required argument
a directory where, for every input sentence, a file is created that contains the
chart dump. The file name corresponds to the input sequence, with spaces
replaced by underscores.

The second dumps incr(tsdb[]) databases and is useful if external pre-
processors are used together with either YY or XML input mode because
incr(tsdb[]) server mode only works from strings with internal preprocessors.
The input sequence is reconstructed from the output of the tokenizer (using a
shortest path algorithm on the input items), and may therefore be not exactly
the same as those given to the preprocessor.

FAQ: Q: What is counted as words in PET? A: The base form entries (also
completely filled multiwords) before inflection rules have been applied.

6

Appendix A

DTD of XML input mode

<!DOCTYPE pet-input-chart [<!ELEMENT

pet-input-chart (w | ne)* >

<!-- base input token -->

<!ELEMENT w (surface, path*, pos*, typeinfo*) >

<!ATTLIST w id ID #REQUIRED

cstart NMTOKEN #REQUIRED

cend NMTOKEN #REQUIRED

prio CDATA #IMPLIED

constant (yes | no) "no" >

<!-- constant "yes" means: do not analyse, i.e., if the tag contains

no typeinfo, no lexical item will be build by the token -->

<!-- The surface string -->

<!ELEMENT surface (#PCDATA) >

<!-- numbers that encode valid paths through the input graph (optional) -->

<!ELEMENT path EMPTY >

<!ATTLIST path num NMTOKEN #REQUIRED >

<!-- every typeinfo generates a lexical token -->

<!ELEMENT typeinfo (stem, infl*, fsmod*) >

<!ATTLIST typeinfo id ID #REQUIRED

prio CDATA #IMPLIED

baseform (yes | no) "yes" >

<!-- Baseform yes: lexical base form; no: type name -->

<!-- lexical base form or type name -->

<!ELEMENT stem (#PCDATA) >

<!-- type name of an inflection rule-->

<!ELEMENT infl EMPTY >

<!ATTLIST infl name CDATA #REQUIRED >

<!-- put type value under path into the lexical feature structure -->

<!ELEMENT fsmod EMPTY >

<!ATTLIST fsmod path CDATA #REQUIRED

value CDATA #REQUIRED >

7

<!-- part-of-speech tags with priorities -->

<!ELEMENT pos EMPTY >

<!ATTLIST pos tag CDATA #REQUIRED

prio CDATA #IMPLIED >

<!-- structured input items, mostly to encode named entities -->

<!ELEMENT ne (ref+, pos*, typeinfo+) >

<!ATTLIST ne id ID #REQUIRED

prio CDATA #IMPLIED >

<!-- reference to a base token -->

<!ELEMENT ref EMPTY >

<!ATTLIST ref dtr IDREF #REQUIRED >

]>

8

