
Aggregate Size (Number of Test Items)Aggregate Size (Number of Test Items)

String Length (‘i−length’)String Length (‘i−length’)

22 44 66 88 1010 1212 1414

00

100100

200200

642

positive
items

#

73.7

word
string

Ø

lexical
items

Ø

C_Diathesis−Active

parser
analyses

Ø

89

total
results

#

72

overall
coverage

%

7.56

C_Coordination

16.83

NP_Agreement

79

2.83

46

55

24

37

7.96

33.3

4.89

27.45

18.24

3.03

1.24

40

29

72.7

78.4

S_Types 235 180 6.53 28.03

C_Diathesis−Passive

1.86

35

125

27

69.4

6.19 33.33

NP_Modification

3.50

83

24

71

88.9

7.03 24.87 1.61 57 80.3

C_Agreement 68 49 5.94

C_Tense−Aspect−Modality

17.86

83

1.45

79

42

5.77

85.7

23.34

NP_Coordination

1.89

55

70

28

88.6

6.07 14.68 1.32 22 78.6

C_Complementation 179 108 5.52

C_Negation

20.27

C_Modification

58

2.97

174

44

98

121

5.30

90.7

7.36

17.45

Total

25.78

1.52

1184

1.77

40

871

71

90.9

6.48

58.7

23.32

Phenomenon

2.08

total
items

#

(generated by [incr tsdb(1)] at 14−nov−98 (17:58) −  (c) oe@coli.uni−sb.de)

gc timegc time

first readingfirst reading

all readingsall readings

total cpu timetotal cpu time

Parsing TimeParsing Time

String Length (‘i−length’)String Length (‘i−length’)

22 44 66 88 1010 1212 1414

00

55

1010

1515

[incr tsdb ()]
Competence and Performance Laboratory

User & Reference Manual

Stephan Oepen

Computational Linguistics — Saarland University





preface | iPreface[...] we view the discovery of parsing strategies as a largely experimentalprocess of incremental optimization. [Erbach (1991)][...] the study and optimisation of uni�cation-based parsing must rely onempirical data until complexity theory can more accurately predict the prac-tical behaviour of such parsers. [...] It seems likely that implementationaldecisions and optimisations based on subtle properties of speci�c grammarscan [...] be more important than worst-case complexity. [Carroll (1994)]Contemporary lexicalized constraint-based grammars (e.g. within the hpsg framework)with wide grammatical and lexical coverage exhibit immense conceptual and computa-tional complexity; as the grammatical framework aims to eliminate redundancy and factorout generalizations, the interaction of lexicon and phrase structure apparatus can be sub-tle and make it hard to predict how even modest changes to the grammar a�ect systembehaviour. Additionally, in a distributed grammar engineering setup (i.e. for a projectwhere several people or even sites contribute to a single grammatical resource) it becomesnecessary to assess the impact of individual contributions, regularly evaluate the qualityof the overall grammar, and compare it to previous versions.Besides concise coverage (i.e. competence) judgments, in most application scenariose�ciency and resource consumption play an increasingly important role; hence, process-ing components typically provide a (potentially) large inventory of control parametersand preference settings. When tuning the analysis component to improve system per-formance, grammar writers often rely on introspection, knowledge of the grammar, andpersonal experience; yet, without systematic pro�ling and performance analysis, processoroptimization amounts to guessing parameter settings and constant experimentation.This user manual documents [incr tsdb()], an integrated package for diagnostics, eval-uation, and benchmarking in practical grammar and system engineering. The softwareimplements an approach to grammar development and system optimization that buildson precise empirical data and systematic experimentation as suggested by Erbach (1991)and Carroll (1994). [incr tsdb()] has been integrated with several contemporary hpsg de-velopment systems; the methodology and tools were designed for su�cient 
exibility andgenerality to facilitate interfacing and adaption to other platforms. The [incr tsdb()] pack-age is made available to the general public (see section 2.2 for details) in the hope thatit may be useful to grammar and system developers and ultimately help in the study andcomparison of salient grammar or processor properties across platforms. Developers arestrongly encouraged to evaluate the package for connecting it to their systems; section 6.1outlines various interface and daptation strategies. For advice and support please contactStephan OepenComputational LinguisticsSaarland UniversityPostfach 15114066041 Saarbr�ucken (Germany)oe@coli.uni-sb.de(+49 681) - 302 41 76The research and implementation of [incr tsdb()] has been carried out in close collabo-ration between Saarland University and CSLI Stanford over a period of several years. The(Draft of October 15, 1999)



ii | [incr tsdb()] competence and performance laboratoryauthor is greatly indebted to Daniel P. Flickinger (CSLI) for the ever outstanding coop-eration, continuous inspiration and support, and the friendship that has evolved from theenterprise. Numerous colleagues at the two institutions and their scienti�c vicinities havecontributed to the approach through invaluable discussions and productive criticism. Toname only a few, the feedback provided by Uli Callmeier, John Carroll, Anne Copestake,Marius Groenendijk, Tibor Kiss, Sabine Lehmann, Rob Malouf, John Nerbonne, and HansUszkoreit has greatly in
uenced the current results.The current [incr tsdb()] distribution contains code developed by Tom Fettig (co-developer of the tsdb database) and Oliver Pl�ahn (co-developer of the table and graphwidgets deployed in the [incr tsdb()] podium); many thanks for these contributions. Partof the research underlying the [incr tsdb()] package was funded by the German NationalScience Foundation (DFG) within the Special Research Divison 378 (Resource-AdaptiveCognitive Processes) project B4 (perform), by the Commision of the European Unionthrough the tsnlp project (LRE-62-089), by Anite Systems, Luxembourg (through asubcontract on integration with alep), and by the German Federal Ministry of Ed-ucation, Science, Research, and Technology (BMB+F) in the framework of the Verb-Mobil project (FKZ:01IV7024). Additional funding was supplied by CSLI and DFKISaarbr�ucken through travel support to the author.

(Draft of October 15, 1999)



contents | iiiContents1 Overview 11.1 The Name of the Game: [incr tsdb()] . . . . . . . . . . . . . . . . . . . . . . 11.2 Structure of the Document . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Installation and Startup 32.1 Distribution Policy | Copyleft . . . . . . . . . . . . . . . . . . . . . . . . . 32.2 Obtaining [incr tsdb()] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.3 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.4 Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.5 Loading and (Re)Starting [incr tsdb()] . . . . . . . . . . . . . . . . . . . . . 82.6 Troubleshooting: Something Went Wrong . . . . . . . . . . . . . . . . . . . 83 Pro�ling Terminology 114 Sample Session 134.1 First Time Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134.2 Creating a Test Suite Instance . . . . . . . . . . . . . . . . . . . . . . . . . 144.3 Browsing the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154.4 Obtaining a Competence and Performance Pro�le . . . . . . . . . . . . . . . 174.5 Pro�le Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184.6 Comparison to Earlier Test Runs . . . . . . . . . . . . . . . . . . . . . . . . 254.7 Zoom: In-Detail Pro�le Comparison and Analysis . . . . . . . . . . . . . . . 294.8 Some Useful Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334.9 Recommendations for Future Experimentation . . . . . . . . . . . . . . . . 345 Reference Manual 355.1 [incr tsdb()] Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355.2 Contents of [incr tsdb()] Pro�les . . . . . . . . . . . . . . . . . . . . . . . . . 355.3 Storage and Reconstruction of Derivations . . . . . . . . . . . . . . . . . . . 355.4 The Menu Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355.5 Visualization and Analysis of Pro�les . . . . . . . . . . . . . . . . . . . . . . 355.6 Comparison among Pro�les . . . . . . . . . . . . . . . . . . . . . . . . . . . 355.7 Data Selection and Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . 355.8 TSQL syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355.9 Importing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355.10 Customization: `~/.podiumrc' and `~/.tsdbrc' . . . . . . . . . . . . . . . . 355.11 Known Problems and Caveats . . . . . . . . . . . . . . . . . . . . . . . . . . 355.12 Options and Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365.13 [incr tsdb()] Command-Line Interface . . . . . . . . . . . . . . . . . . . . . . 365.14 tsdb Database Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 Application Program Interface 376.1 Connecting [incr tsdb()] to Another Processor . . . . . . . . . . . . . . . . . 376.2 Parallel Virtual Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386.3 ANSI C Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406.4 Common-Lisp Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436.5 Using [incr tsdb()] Distributed Mode . . . . . . . . . . . . . . . . . . . . . . 43(Draft of October 15, 1999)



iv | [incr tsdb()] competence and performance laboratory6.6 Debugging [incr tsdb()] Distributed Mode . . . . . . . . . . . . . . . . . . . 44A Contents of the [incr tsdb()] Distribution iReferences iii

(Draft of October 15, 1999)



overview | 11 OverviewThis manual documents [incr tsdb()], an integrated package for diagnostics, evaluation,and benchmarking in practical grammar and system engineering. [incr tsdb()] builds onthe following components and modules� test and reference data stored with annotations in a structured database; annotationscan range from minimal information (unique test item identi�er, item origin, lengthet al.) to �ne-grained linguistic classi�cations (e.g. regarding grammaticality andlinguistic phenomena presented in an item) as represented by the tsnlp test suites(Lehmann et al. (1996));� tools to browse the available data, identify suitable subsets and feed them throughthe analysis component of a processing system like lkb (Copestake (1992)), page(Uszkoreit et al. (1994)), and others;� the ability to gather a multitude of precise and �ne-grained system performance mea-sures (like the number of readings obtained per test item, various time and memoryusage metrics, ambiguity and non-determinism parameters, and salient properties ofthe result structures) and store them as a competence and performance pro�le;� graphical facilities to inspect the resulting pro�les, analyze system competence (i.e.grammatical coverage and overgeneration) and performance at highly variable gran-ularities, aggregate, correlate, and visualize the data, and compare pro�les obtainedfrom previous grammar or system versions or other platforms.1.1 The Name of the Game: [incr tsdb()]As the [incr tsdb()] package has some (partly historic) internal structure (see �gure 5.1 fora sketch of the system architecture), so has its name. The data and pro�les are storedin tsdb, a simple and portable relational database system (Oepen et al. (1997)) that grewout of the tsnlp project; the interfaces to lkb and page and the bulk of the pro�ling andanalysis routines are implemented in Common-Lisp: here, tsdb() is the central functioncall in the interface to the processors; �nally, the graphical user interface and visualizationcomponents build on the Tk widget library (Ousterhout (1994)) and the Tcl commandinterpreter where `[incr]' is the Tcl equivalent of the C increment operator `++'.In short, [incr tsdb()] is a hybrid collection of individual bits and pieces, and so is thename of the package; fortunately, there is a unique, simple, and universal pronounciationfor it tee ess dee bee plus plus1Possibly, some people will �nd the name ugly, obscure, unpronounceable, meaningless, orreally really geeky ... alas, it is the way it is. We hope they will like the software better.1.2 Structure of the DocumentThe following sections describe (i) how to obtain, install, and start [incr tsdb()], (ii) presentthe core functionality by walking trough a sample session, and (iii) detail the facilities ofthe [incr tsdb()] user interface as a reference manual for experienced users.1Many thanks to Rob Malouf of CSLI Stanford for the transliteration and detailed comments on earlierworking titles for the [incr tsdb()] package deal.(Draft of October 15, 1999)



(Draft of October 15, 1999)



installation and startup | 32 Installation and StartupThe following sections detail the (i) conditions under which [incr tsdb()] is made available,(ii) how to obtain, (iii) install, and (iv) register the package, and (v) the basic loading andstart-up commands stand-alone or embedded mode with the lkb or page host platforms.Distribution details are likely to change in the near future when the package and up-to-dateinformation become available for InterNet download.2.1 Distribution Policy | CopyleftAiming for a commonly-accepted (pre-standard) diagnostic and evaluation methodologyand technology, wide dissemination and assessment of the [incr tsdb()] package is mostdesirable. Thus, the software (in source code) and data are made available to the generalpublic, free of royalties, for academic or other non-commercial use, including deploymentin corporate environments. Though there is no principled obstacle to license commercialuse of the package, prior consultation with the author and a written license agreement willbe required.All copyright and intellectual property rights remain with the author. To providefeedback on the distribution of the package, [incr tsdb()] users are encouraged to register(see below) and relay comments, bug reports or suggestions for improvement to the contactaddress given in the section preface above. While unregistered, the package is fullyfunctional but, after several minutes of continuous use, a log message is generated and sentto a central protocol server (at Saarbr�ucken University). This noti�cation message onlycontains information about the version of [incr tsdb()] used and the name of the machineon which it is currently running.2 Registering the software will e�ectively suppress allmessage generation for all future uses.Users of [incr tsdb()] are welcome to incorporate parts or all of the data and tools intoapplications or programs of their own and to modify, copy, and further distribute these aslong as this license is preserved and included in its original form. It is strongly encouragedto contact the author for noti�cations of changes or extensions to the package and toaim for integration with the standard release and public distribution for any substantialadditions made.The author explicitly declines any warranty or liability for [incr tsdb()]. In particular,please note that:Because the program is licensed free of charge, there is nowarranty for the program, to the extent permitted by applica-ble law. Except when otherwise stated in writing the copyrightholders and/or other parties provide the program as is withoutwarranty of any kind, either expressed or implied, including, butnot limited to, the implied warranties of merchantability and fit-ness for a particular purpose. The entire risk as to the qualityand performance of the program is with you.Should the program prove defective, you assume the cost ofall necessary servicing, repair or correction. In no event, un-less required by applicable law or agreed to in writing, will any2However, please note that because of the transmission protocol used over the InterNet, additionalinformation becomes available to the registration server, viz. the time of [incr tsdb()] usage (when themessage is generated) and the account used (the originator of the protocol message).(Draft of October 15, 1999)



4 | [incr tsdb()] competence and performance laboratorycopyright holder, or any other party who may modify and/or re-distribute the program as permitted above, be liable to you fordamages, including any general, special, incidental, or consequen-tial damages arising out of the use or inability to use the program(including but not limited to loss of data or data being renderedinaccurate or losses sustained by you or third parties or a fail-ure of the program to operate with any other programs), even ifsuch holder or other party has been advised of the possibility ofsuch damages.2.2 Obtaining [incr tsdb()]As of October 1999, the [incr tsdb()] package is not yet available for public downloadover the InterNet. However, the entire package (all source code and data) can be madeavailable to interested (and tolerant) users upon request; please visit the [incr tsdb()] website (under construction) athttp://www.coli.uni-sb.de/itsdb/and contact the [incr tsdb()] author (see the preface section earlier in this document) torequest download access. The author will try to supply support and consolation whereverpossible.2.3 InstallationAs of October 1999, [incr tsdb()] is only available for Franz Allegro Common-Lisp versions4.3 or 5.0, and will only work on the Solaris (Sparc), Linux (x86), and OSF (DEC Alpha)platforms. The current pre-release version should be compatible with lkb versions 5.1 and5.2 and the October 1999 incarnation of page.3 Besides, [incr tsdb()] can be con�gured asa stand-alone application that allows o�-line data inspection and interfacing to externalprocessors (see section 6). Depending on the target system (e.g. Solaris vs. Linux) andtype of host platform available (e.g. lkb source vs. image distributions) di�erent subsetsof the available [incr tsdb()] archives need to be obtained and installed.All archive �les comprising the [incr tsdb()] distribution are in gzip(1)ed tar(1)format; they contain subdirectories and �les in such a way that they must be unpackedinto the same target directory. This target directory is often referred to as the directoryroot for the [incr tsdb()] installation. It should either be created as a new directory priorto unpacking the archive �les (for stand-alone [incr tsdb()] installation; see below) or bean existing directory that already serves as the root directory for an installation of thelkb host platform (embedded [incr tsdb()] installation; see below).When unpacking archive �les, the target directory should be the current working di-rectory; then, commands like, for example�� �
gzip -d -c source.tar.gz | tar xvf -3For access to and download instructions for lkb and page see� http://www-csli.stanford.edu/~aac/lkb.html and� http://www.dfki.de/lt/systems/page/respectively. (Draft of October 15, 1999)



installation and startup | 5# archive name archive description1 documentation.tar.gz draft User Manual and background reading2 libraries.tar.gz Tcl/Tk libraries; support �les; man(1) pages3 data.tar.gz test suite skeletons and sample pro�les4 source.tar.gz Common-Lisp and Tcl/Tk source �les5 solaris-binaries.tar.gz binary and object �les for Solaris 2.6 (Sparc)6 linux-binaries.tar.gz binary and object �les for Linux 2.2.x (x86)7 osf-binaries.tar.gz binary and object �les for OSF1 (DEC Alpha)8 fasl.tar.gz precompiled �les for lkb image distribution9 standalone.tar.gz [incr tsdb()] stand-alone loading environmentFigure 1: Summary of archive �les comprising the [incr tsdb()] distribution. Suitablesubsets have to be chosen according to the target platform (operating system) and typeof host platform installation, if any. Note that archive (9) must not be installed on-top ofa lkb source installation.can be used to extract the contents of the selected archive �les into the target directory.Subdirectories `bin/', `etc/', `lib/', `man/', and `src/' (and maybe others) will be created,if they do not already exist as part of the host platform.All Installations The archives (1) through (4) are required for all types of installation.Additionally, at least one of (5) to (7) is needed for all installations. The same instal-lation can be used on multiple platforms (e.g. in a directory tree that is shared amongSolaris and Linux hosts); platform-speci�c executables and libraries are stored in separatesubdirectories of the `bin/' and `lib/' installation directories.lkb Source Distribution If [incr tsdb()] is installed on-top of an existing lkb sourcedistribution, no additional archive �les are required. In particular, please note that archive(9) con
icts with the lkb source code distributed by CSLI Stanford and may only beused with binary-only lkb distributions or stand-alone [incr tsdb()] installations. Afterunpacking the [incr tsdb()] archive �les, the Common-Lisp source code needs to be compiledinto platform-speci�c object �les; this can be achieved by loading the lkb using the regular(site-speci�c) procedure, and then evaluating the following form from the Lisp prompt:�� �
(compile-system "tsdb")The creation of object �les is a �rst-time only procedure, but has to be executed for eachtarget system for which [incr tsdb()] is installed. Obviously, write-access to the targetdirectory tree is required in this step; once compiled, the [incr tsdb()] installation can beshared among multiple users.lkb Binary Distribution Since the ready-to-run lkb executables distributed fromStanford cannot contain the Allegro compiler, precompiled [incr tsdb()] object �les can beobtained as archive �le (8). Besides, the lkb executable needs to be instructed about thelocation of the [incr tsdb()] directory tree, and the loading routines included as part of the(Draft of October 15, 1999)



6 | [incr tsdb()] competence and performance laboratoryexecutable have to be rede�ned for the compiler-less environment (the underlying problemis that the compiler was there at image creation time, such that the procedures dumpedinto the image assume a di�erent con�guration from what is ultimately available). Bothrequirements can be satis�ed using either the lkb source distribution (see above) or the[incr tsdb()] archive �le (9) supplied for stand-alone [incr tsdb()] installation. Users whoare concerned about disk space may prefer archive (9) over the complete lkb source code,since only a few of the �les are required to activate the loadup environment; on the otherhand, lkb source code availability may be useful for reference purposes even for sites thatonly use the ready-to-run binaries.Either way, unpacking the lkb source code or the [incr tsdb()] stand-alone archive �le(9) creates, among others, the �le `loadup.lisp' in the `src/general/' subdirectory ofthe [incr tsdb()] root directory. To load [incr tsdb()] into a running lkb image, evaluatethe following from the Lisp prompt (assuming that `~/itsdb/' is the directory root):�� ��(load "~/itsdb/src/general/loadup")(load "~/itsdb/src/general/defsystem")4(load-system "tsdb")Loading of [incr tsdb()] into a lkb runtime binary could be automated by putting thesethree Lisp operations into the user-speci�c Allegro CL start-up �le `~/.clinit.cl' or aseparate �le that can be loaded by means of the `-L' command-line option. However,automated creation of the [incr tsdb()] podium window (i.e. the last step triggered by theload-system() form) during Allegro CL start-up can only succeed if the Lisp is run fromthe Allegro CL { emacs(1) interface (see section 5.11 on known [incr tsdb()] problems fordetails). Before attempting to automate the loading of [incr tsdb()], it is therefore recom-mend to validate proper installation and loading by executing the interactive proceduredescribed above.Stand-Alone [incr tsdb()] Installation If [incr tsdb()] is installed as a stand-alone pack-age rather than as an add-on module for the lkb or page host platforms, archive �le (9)is required to supply the loading environment (that is otherwise provided by the hostplatform).5 After unpacking all of the necessary archives, Common-Lisp source code hasto be compiled for �rst-time use, just like with a lkb source distribution (see above).Additionally, the Lisp system has to be informed about the location of the [incr tsdb()]installation directory. Again assuming that `~/itsdb/' is the [incr tsdb()] directory root,the following forms have to be evaluated from the Lisp prompt, preferably in a freshCommon-Lisp universe:�� ��(load "~/itsdb/src/general/loadup")(compile-system "tsdb")4Reloading the defsystem() facility here is only required because the lkb ready-to-run images al-ready contain a version that assumes availability of the Lisp compiler; since the image records thatthe defsystem() facility was loaded before, `loadup.lisp' all by itself does not require the (re)load of`defsystem.lisp' as it would normally.5For sites that do not have access to a suitable Common-Lisp environment, using the self-containedlkb image distributions for Solaris or Linux (see above) may be an option even if the lkb functionality isnot required. Alternatively, a fully functional trial version of Allegro CL for Linux can be downloaded freeof charge from `http://www.franz.com/'.(Draft of October 15, 1999)



installation and startup | 7Target directories for the compiled object �les (like `src/.fasl/' or `src/.lasl/) shouldhave been created as part of the platform-speci�c (binaries) archive(s) already; if compi-lation fails because of missing object �le directories, those need to be created manuallyusing mkdir(1).2.4 RegistrationAs part of the installation or at a later time (e.g. once you found the package to be usefulfor your purposes), it is recommended that you register with the author. Registration isnot intended to restrict distribution or application of the software, to charge users a licensefee, or turn a pro�t from the sale of a large customer database. The main and only purposeof voluntary registration is to provide feedback to the author and to allow (occasional)relaying of information to the actual users; unless otherwise requested, registered userswill be added to the [incr tsdb()] maling list. The maling list is used by the author toannounce major version upgrades as they become available; it is very low tra�c.Registration proceeds as follows(i) make yourself known to the author: send email to the contact address containinginformation about the user name(s) and machine name(s) that you want to register;if you want to register for an entire InterNet domain (i.e. a wildcard machine name)or a group of users (i.e. all accounts for some host or domain), please give an estimateof the expected size of either set;(ii) receive one or multiple [incr tsdb()] license keys for your site by email;(iii) add the license key(s), in exactly the same format as they were received, to the �le`Keys' in the `src/tsdb' subdirectory of your installation; e.g.'
&

$
%

* *.coli.uni-sb.de OE1234567890stefan *.dfki.uni-sb.de OE1234567890uc *.dfki.uni-sb.de OE1234567890* eo.stanford.edu OE1234567890* eoan.stanford.edu OE1234567890malouf gerund OE1234567890aac anstac OE1234567890alternatively, e.g. if you have no write access to the [incr tsdb()] source tree at yoursite, the license key can be set from the �le `~/.podiumrc' (see section 5.10) in yourhome directory; e.g.�� �
set globals(copyleft,key) OE1234567890;On start-up, the main [incr tsdb()] interaction window will display a copyright messagethat re
ects the status of the current copy; it will either display a message like�� �
| Registered Copy [OE1234567890] |(Draft of October 15, 1999)



8 | [incr tsdb()] competence and performance laboratorycon�rming the registration and the license key currently in use, or notify the user aboutthe pending protocol message that will be generated after several minutes of continuoususe (see section 2.1 above).2.5 Loading and (Re)Starting [incr tsdb()]Once [incr tsdb()] has been installed and compiled (where necessary) successfully, requiringthe `tsdb' system should be su�cient in future sessions. Thus, after loading the hostplatform or the �le `loadup.lisp' (for stand-alone installations; see above), respectively,evaluating the form6 �� �
(load-system "tsdb")should result in loading the [incr tsdb()] Common-Lisp code (from the `src/tsdb/lisp/'subdirectory of the source tree) into the current environment; if necessary, the systemwill suggest to (re)compile some or all of the source �les �rst and ask for con�rmation.7Once loading has completed, the [incr tsdb()] main interaction window | called the [incrtsdb()] podium (see �gure 2 for a screen shot) | will be displayed. From here on continuethrough the sample session sketched in section 4 below.If, for some reason, loading the system code completes, but fails to create the podiumwindow, or if the podium window has been closed (or destroyed) accidentally, the followingCommon-Lisp form can be used to request creation of the podium:�� �
(tsdb:tsdb :podium)The same command can be used to shutdown a running [incr tsdb()] instance and create afresh interaction window (e.g. to recover from a system error or a misbehaving [incr tsdb()]status; please remember to submit problem reports where unexpected behaviour occurs).If the system reports an error in creating the podium window, or just fails silently, seesection 2.6 below.2.6 Troubleshooting: Something Went WrongMany things can go wrong. Following is a list of problems related to [incr tsdb()] in-stallation that have been encountered by other users; please check the list before seekingsupport from the author.(1) Failure to Create Podium Window If | after loading the [incr tsdb()] code |evaluating the form (tsdb:tsdb :podium) fails to create a new window presentinga view similar to �gure 2, there is a problem in creating the external (from theLisp perspective) Tcl/TK process. First, make sure the `DISPLAY' environment6If you �nd yourself using the [incr tsdb()] package regularly, you can in fact use the same (single)command to load both the host platform and the [incr tsdb()] code; thus, (load-system "tsdb") willautomatically trigger the (load-system "lkb") (or equivalent for page) that is usually required to loadthe host platform from a source distribution.7Should the compilation and loading of the [incr tsdb()] Common-Lisp code fail, this may indicatea problem in the installation of the underlying host platform (i.e. lkb or page); see the appropriatedocumentation (if available) and check section 2.6 below.(Draft of October 15, 1999)



installation and startup | 9variable is set correctly: the value seen by Lisp can be queried using the Allegro-speci�c function call (system:getenv "DISPLAY"); in turn, the host running theLisp process (which will create the Tcl/TK process on the same machine) needsto be authorized to connect to the X server speci�ed by the `DISPLAY' variable(see xauth(1) or xhost(1)). Secondly, verify that the platform-speci�c binarieshave been installed correctly and are compatible to the local operating system andversion: once more assuming `~/itsdb/' as the [incr tsdb()] directory root, it mustbe possible to execute the Tcl/TK interpreter from a shell as, for example:�� �
~/itsdb/bin/solaris/swish++8which should pop up an empty Tcl/TK window.

8For the Linux (x86) and OSF (DEC Alpha) platforms use `linux' and `osf' as the last directorycomponent, respectively. (Draft of October 15, 1999)



(Draft of October 15, 1999)



terminology | 113 Pro�ling TerminologyThis section introduces some basic terminology that will be used throughout the discussionof the [incr tsdb()] approach.Host Platform Earlier versions of [incr tsdb()] were always embedded into Lisp-basedgrammar development environments (viz. the lkb or page systems); in this setup,the underlying grammar development and processing environment (sharing the sameLisp universe with [incr tsdb()]) is referred to as the host platform. Given the re-cent addition of a generic C application program interface (see section 6), the [incrtsdb()] package can now be run as a stand-alone application that communicates withclient processes through a distributed inter-process communication mechanism (sec-tion 6.2). As of May 1999, however, the embedded setup still is the default solutionfor Lisp-based host platforms.Test Item The basis elements used in testing and diagnosis are called test items; all [incrtsdb()] test data | classical test suites and corpora extracts alike | are structuredas a sequence of test items, typically sentences or other types of phrases. A testitem, typically, is composed of a string, used as input to the processor, together withlinguistic and non-linguistic information associated with each test item (so-calledannotations). The minimal annotations per test item are (i) a unique test item iden-ti�er, (ii) the item length (in words), and (iii) a grammaticality (or wellformedness)code. Other types of annotations, e.g. in the tsnlp test suites, can include the syn-tactic categories of test items, the ssociation with one or more syntactic phenomena,and a (sometimes partial) description of tectogrammatical structure. When im-porting test items from ASCII �les (see section 5.9), [incr tsdb()] will automaticallygenerate this minimal level of item annotation.Test Suite Traditionally, the term test suite is used for hand-crafted sets of test data;within the [incr tsdb()] context this notion is generalized somewhat to include bothmanually-constructed data sets (typically containing systematically chosen gram-matical as well as ungrammatical test items and aiming to present distinct phe-nomena in isolation or controlled interaction) and sequences of test items extractedfrom actual text corpora (typically excluding negative test items but demonstratinga richer combination of phenomena interaction and ambiguity). [incr tsdb()] makesa (technical) test suite subdivision according to processing state: see the discussionof test suite skeletons vs. instances below.Test Suite Skeleton Analogous to the material vs. data distinction assumed in manyexperimental paradigms, [incr tsdb()] reserves the term test suite skeleton to refer topure collections of test material, i.e. sets of test items and associated annotations,that have not (yet) been enriched with processing results (or data, in this respect).Test suite skeletons are stored as partial databases that contain all-empty relationsfor those parts of the database schema (see section 5.2 for details) that are usedfor application-speci�c parameters obtained from a test run (see below). Test suiteskeletons are read-only databases that (without profound [incr tsdb()] knowledge)cannot be modi�ed.Test Suite Instance When preparing for a test run (see below), one of the availabletest suite skeletons is selected and subsequently instantiated to yield a new test suite(Draft of October 15, 1999)



12 | [incr tsdb()] competence and performance laboratoryinstance. The [incr tsdb()] podium body (see section 4) displays the list of availabletest suite instances (sometimes called the current working set) together with size andstatus information. Right after the creation of a new test suite instance, the databasecontains all information copied from the test suite skeleton that was instantiatedand is then available to store new data obtained by processing the test material. Tosimplify data organization and result analysis, [incr tsdb()] typically assumes a one toone correspondence between test runs and test suite instances; when processing analready existing test suite instance, by default all non-skeleton data will be deleted.Test Run The process of batch processing a set of test items, obtaining competenceand performance parameters for the application system used, and storing these re-sults into the active test suite instance is referred to as a test run. Each test runis described in terms of the environment used for processing (like the applicationsystem and grammar versions employed, size of grammar and lexicon, current userand machine, start and end time, and others) and can have a descriptive commentassociated with it. The completion of a test run �lls in the system-speci�c sectionsin a test suite instance (i.e. the `run', `parse', and `result ' relations).(Compentence & Performance) Pro�le Complete test suite instances that have beenenriched with competence and performance information for a token processing sys-tem (and grammar version) are frequently described as competence & performancepro�les. While, technically, pro�les are just test suite instances, i.e. databases in thecurrent working set, the specialized term emphasizes the diagnostic nature of thedata: within the [incr tsdb()] approach competence & performance pro�les are thefundamental building blocks for the in-depth, empirical analysis and comparison ofvarious processing systems and strategies. Each [incr tsdb()] pro�le is a rich, accu-rate, and structured snapshot of relevant competence and performance properties ofa token processor and grammar version.

(Draft of October 15, 1999)



sample session | 13

Figure 2: Screenshot of [incr tsdb()] podium: (i) the horizontal top area displays context-dependent (balloon-type) help; (ii) the menu structure re
ects the prototypical pro�lingsequence: browsing the available data, processing and analysis of individual pro�les, andcomparison and in-detail study among pro�les; (iii) the podium body lists all currentlyavailable pro�les and their key properties; (iv) the progress meter gives an estimate of theremaining work to complete the current task; �nally, (v) the lower left minibu�er servesfor status messages and parameter input; when idle, the progress meter displays a digitalclock.4 Sample SessionFollowing is a detailed, step-by-step discussion of a sample session; [incr tsdb()] is used to(i) create a new test suite instance (see section 3 for some key terminology), (ii) inspectthe available test data, (iii) batch process a set of test items, (iv) inspect the resultingpro�le, and (v) compare it to results obtained from a previous grammar version.The examples assume a running [incr tsdb()] podium (in a state similar to what isdisplayed in �gure 2) and a processor (either lkb or page) with a suitable grammarloaded. The individual steps (in the sequence given) can be taken as a guided tour of themachinery; all data sets used in the presentation are included with the distribution, sothat the sample tables and graphs can be reproduced and serve as a basis for individualexperimentation.4.1 First Time PreparationUnless the user running [incr tsdb()] is, at the same time, the owner of the source tree (forthe host platform and [incr tsdb()]), the package requires a dedicated directory that is usedto store test suite instances and pro�les. The default installation comes with a centralpro�le repository that contains a few example data sets for common reference; but thecentral directory will typically not allow write access (i.e. creation of new directories and�les) by non-privileged users. Thus, as soon as an [incr tsdb()] user wants to create a newtest suite instance and obtain a current pro�le | as will be demonstrated in this samplesession | she has to designate a user-writable directory (a subdirectory `tsdb' in the userhome directory, for example) for pro�le storage. After creation of the directory (e.g. using(Draft of October 15, 1999)



14 | [incr tsdb()] competence and performance laboratoryUn�x mkdir(1)), [incr tsdb()] has to be informed of the location: the `Options {DatabaseRoot' command pops up a directory input dialogue in the podium minibu�er, e.g.�
 �	database root: ~/tsdb/The minibu�er input dialogue provides emacs(1)-style context-sensitive completion |directory completion in this case | using the �� ��Tab key: hitting �� ��Tab (once) completesthe current input as long as there is an unambiguous common pre�x for the current set ofalternatives or displays the list of choices in the podium body; directories are completedincluding a trailing `/' (see above) to simplify the validation of the value entered. �� ��Returncompletes the directory input and makes [incr tsdb()] search the speci�ed location forexisting pro�les; the status message�� �
obtaining tsdb(1) database list ...is displayed in the minibu�er while the �le system is inspected. Obviously, for a newlycreated directory the list of available pro�les will at �rst be empty.4.2 Creating a Test Suite InstanceThe `File { Create' menu (actually, the menu cascade that pops up when the `Create' entryis selected from the `File' menu) displays the current set of available test suite skeletons,their names and size in test items. Assuming a default installation with English skeletonsactivated, the list should be something like'
&

$
%

Aged VerbMobil Data (`vm') 96 itemsCSLI (LinGO) Test Suite (`csli') 1348 itemsDevelopment Test Suite (`toy') 26 itemsTSNLP Test Suite (`english') 4612 itemsVerbMobil 97 (`vm97') 100 itemsVerbMobil 97 (Partials) (`vm97p') 252 itemsVerbMobil 98 (`vm98') 347 itemsSelecting one of the `File { Create' entries, the `CSLI (LinGO) Test Suite' say, pops upan input dialogue in the minibu�er�� �
create: lingo/nov-98/csli/98-11-20/pagethat prompts for the name for the new test suite instance to be created. The namesuggested by [incr tsdb()] typically will contain the following path components (section 5.10shows how to customize the system suggestion)�� �
hgrammari/hversioni/hskeletoni/hdatei/hprocessori
(Draft of October 15, 1999)



sample session | 15where hgrammari and hversioni (if applicable) are taken from the value of the (Common-Lisp) variable *grammar-version*;9 hskeletoni is the short name of the test suite skeletonused (the name given in parenthesis in the `File { Create' list); and hprocessori identi�esthe current host platform (e.g. lkb or page).The minibu�er input dialogue allows emacs(1)-style editing of the name suggested by[incr tsdb()]: �� ��Control-G aborts the current task, �� ��Return completes the input and startsthe creation of a new test suite instance. After a few seconds, the new name is insertedinto the list of available test suite instances in the podium body (sorted by lexicographicorder); the status for a fresh test suite instance is `rw' (read-write), the number of itemsas in the skeleton used (i.e. 1348 for the current example), and the number of parses 0for an empty pro�le. The new test suite instance is selected (made active) after creation.The current selection is indicated by highlighting the complete entry in the podium list;there can be at most one active test suite instance at any given time.4.3 Browsing the DataBefore starting a time-consuming test run, it can be desirable to inspect the avaiable testitems from the active test suite instance.The `Browse {Vocabulary' command displays a sorted list of vocabulary (i.e. wordforms) used in the test items together with the frequencies of occurence. The printedoutput goes to the window that was used to start the [incr tsdb()] podium (i.e. the lkb orpage Lisp listener).The `Browse {Test Items' and `Browse {Phenomena' menus can be used to view (partof) the raw data as a table presenting a selection of database �elds (attributes) for allor a subset of the records from the active test suite instance. Since computing the tablelayout and geometry for larger databases can take substantially more time than it should(i.e. from a few seconds to around one minute on an average cpu), it is in general wise torestrict the selection of the data to what is actually needed.A common way to select subsets of test items is by means of a classi�cation of gross syn-tactic phenomena. Both the CSLI and tsnlp test suites deploy the classi�cation schemedeveloped in the tsnlp project (see Lehmann et al. 1996 for details); `Browse {Phenomena'on the CSLI data set yields the display shown in �gure 3. The `Browse {Test Items' menu,in turn, allows a selection from all available test items by phenomenon: `Browse {TestItems { C Complementation', for example, displays all test items, their unique identi�ers,actual input string, wellformedness code (where 1 is grammatical and 0 ungrammatical),and root category as follows:9The value of *grammar-version* typically is determined from the matrix load �le for a token grammar;for the November 1998 version of the LinGO erg, for example, the �les `script' (lkb version) and`english.tdl' (page version) contain the statement�� ��(setf *grammar-version* "LinGO (nov-98)")that results in values for hgrammari and hversioni as used in the example.
(Draft of October 15, 1999)



16 | [incr tsdb()] competence and performance laboratory

Figure 3: Display resulting from the `Browse {Phenomena' command on an instance of theCSLI test suite: the list of core syntactic phenomena | ranging from sentence types overcomplementation, agreement, and modi�cation phenomena to negation and coordination| is used in classifying test items according to the phenomena they present.
(Draft of October 15, 1999)



sample session | 17i-id i-input i-wf i-category1 Abrams works . 1 S2 Abrams hired Browne . 1 S3 Abrams showed the o�ce to Browne . 1 S4 Abrams showed Browne the o�ce . 1 S5 Abrams bet Browne �ve dollars that Chiang hired Devito . 1 S6 Abrams became competent . 1 S7 Abrams became a manager . 1 S8 Abrams became in the o�ce . 0 S9 Abrams became working . 0 S10 Abrams is interviewing an applicant . 1 S... ... ... ...Other means to browse the data selectively and identify meaningful subsets are the`Browse {Custom Query' and `Options {TSQL Condition' menues; they will be presented byexample in section 4.7 below.From the `Browse {Test Items' table (and all similar tables that contain the i-id andi-input �elds) it is possible to feed individual test items to the processor (e.g. to verifythe parser well-functioning) by double-clicking any mouse button on the i-input �eld.Interactive processing will not disable the trace and result displays or write new data tothe currently active pro�le (see below).4.4 Obtaining a Competence and Performance Pro�leWhile most of the [incr tsdb()] functionality is independent of the underlying platform (and,in fact, can be loaded and used without either lkb or page), processing a set of test itemsand obtaining a new competence and performance pro�le, obviously, presupposes that thehost platform is con�gured and fully operational (i.e. can parse sentences interactively andproduces the expected result).As for browsing the data (see above), it may seem desirable to save processing time byrestricting a test run to a subset of the test items available in a token test suite instance.However, since all pro�les are stored as a database and made available for future reference,it is typically desirable to obtain complete pro�les that contain information for parsingall test items. Thus, all instances of the same test suite skeleton will always be mutuallycomparable to each other.Yet, under certain conditions one may want to restrict the parser to a non-exhaustivesearch strategy by means of the `Options { Switches { Exhaustive Search' switch. For pageat least, non-exhaustive parsing means that the parser stops searching for solutions whenthe �rst reading is found;10 for test data where the grammar assigns at least one readingto most test items (i.e. it achieves a good coverage rate), the non-exhaustive mode willresult in a signi�cant reduction of procesing time. At the same time, again, obtaining apro�le through non-exhaustive parsing limits interpretation and comparison of the data(e.g. there is no information on global ambiguity and the overall processing times areskewed); hence, non-exhaustive pro�les should be marked explicitly, for example by thename chosen for the test suite instance and the descriptive comment associated with thetest run.10The lkb parser (as of November 1998) uses a mostly breadth-�rst parsing strategy that allows nomeaningful distinction between exhaustive and non-exhaustive parsing. Hence, in the lkb system thetimes reported for �nding the �rst reading and �nding all readings should always be the same.(Draft of October 15, 1999)



18 | [incr tsdb()] competence and performance laboratoryAssuming the default [incr tsdb()] settings and `lingo/nov-98/csli/98-11-20/page'(from above) as the active test suite instance, the command `Process {All Items' will(i) prompt for a descriptive comment (the purpose of this test run, say, or an unusualaspect of the current setup) in the minibu�er; this comment and some additionalinformation about the current condition of the host platform will be stored togetherwith the actual parsing results into the resulting pro�le;(ii) delete (purge) all existing parses (none for the present example) from the active testsuite instance (but see the documentation of `Options { Switches {Overwrite Test Run'in section 5.4);(iii) make the processor load the vocabulary required for parsing the test data (see`Options { Switches {Autoload Vocabulary') and print a lexicographically sorted list-ing of the number of lexical items retrieved and successful lexical rule applicationsper input word (see �gure 4);(iv) put the processor into batch parsing mode (all graphical display for parsing results isdisabled) and install the selected garbage collection strategy (see `Options { Switches {Enable Tenuring' and others);(v) feed the test data, one item at at a time, through the parser, gather a large numberof processing metrics from the host platform (see �gure 4 and section 5.2 for details),and store the results into the pro�le database.While processing vocabulary and test items, the progress meter indicates the percent-age of work already completed (as shown in �gure 2 above); upon completion of the testrun, the listing of test suite instances is updated to re
ect the change in the number ofparses in the active pro�le. The database that now contains both the test data from thetest suite skeleton plus the overall test run information and individual processing resultsfor each test item constitutes a new competence and performance pro�le, a large pool ofstructured information that is now ready for inspection.Despite all reservations to pro�les obtained from partial test runs expressed earlier,other commands from the `Process' menu allow a selection of a subset of the availabledata to be processed (viz. the `Positive Items', `Negative Items', and `TSQL condition'commands, of which the �rst two have the obvious e�ect while the latter prompts for aTSQL condition to be used in constraining the input data; see section 5.8 for the precisesyntax used). `Process {Vocabulary', �nally, makes the host platform load the necessaryvocabulary without triggering an actual test run.4.5 Pro�le AnalysisThe [incr tsdb()] podium o�ers a number of pre-con�gured views on a data set. Addi-tional con�guration options allow the 
exible adjustment of the analysis perspective andgranularity; additionally, [incr tsdb()] provides tools to visualize processing results on aper-item basis. All analysis commands use the currently active test suite instance (theone highlighted in the podium body) as the base data set; the selection can be changedby (single) clicking the left mouse button on another pro�le.The most common queries to a pro�le are implemented through the `Coverage', `Over-generation', and `Performance' commands in the `Analyze' menu. Either of the three com-mands will select the neccesary data from the selected test suite instance, compute the(Draft of October 15, 1999)



sample session | 19
'

&

$

%

retrieve(): found 1348 items.merge-with-output-specifications(): found 0 output specifications.! | 23 reference(s) | [0 + 0] lexical entrie(s);( | 6 reference(s) | [0 + 0] lexical entrie(s);) | 6 reference(s) | [0 + 0] lexical entrie(s);...would | 28 reference(s) | [1 + 4] lexical entrie(s);years | 1 reference(s) | [1 + 0] lexical entrie(s);you | 23 reference(s) | [1 + 0] lexical entrie(s);yourselves | 2 reference(s) | [1 + 0] lexical entrie(s);largest-run-id(): largest `run-id' is 0.retrieve(): found 1348 items.merge-with-output-specifications(): found 0 output specifications.create-cache(): tsdb(1) write cache in `/tmp/.tsdb.cache.oe.60890'.install-gc-strategy(): disabling tenure; global garbage collection ... done.largest-parse-id(): largest `parse-id' (for `run-id' 1) is 0.(1) `Abrams works .' [0] --- 1 (1.1|0.4:1.0 s) <5:38> (13.8M) [0].(2) `Abrams hired Browne .' [0] --- 1 (0.8|0.3:0.6 s) <5:63> (6.4M) [0].(3) `Abrams showed the office to Browne .' [0] --- 1 (5.1:0.5|2.2:3.9 s) <24:218> (45.1M) [0].(4) `Abrams showed Browne the office .' [0] --- 1 (1.8|0.5:1.4 s) <16:177> (8.3M) [0]....(1347) `The person to know is Kim .' [0] --- 5 (2.7|0.8:2.2 s) <18:267> (10.4M) [0].(1348) `*The person whether to know is Kim .' [0] --- (2.5|2.0 s) <20:202> (9.5M) [0].flush-cache(): tsdb(1) cache for `lingo/nov-98/csli/98-11-20/pageq' flushed.Figure 4: Excerpt of printout produced from the `Process {All Items' command. Afterloading and expansion of the necessary lexical entries, the parser log format aims to givea compact summary of some of the information gathered; besides the item identi�er,input string and an upper limit for chart edges (given in square brackets) if available, theinformation following the triple dash is: the number of readings obtained, the time used to�nd the �rst reading and overall (exhaustive search) processing time (in parentheses) thenumber of lexical items involved and total number of edges in the chart (angle brackets),the amount of memory used, and the number of (global) garbage collections while parsing(square brackets).
(Draft of October 15, 1999)



20 | [incr tsdb()] competence and performance laboratory

671

positive
items

#

77.0

word
string

Ø

lexical
items

Ø

C_Diathesis−Active

parser
analyses

Ø

89

total
results

#

72

overall
coverage

%

7.56

C_Coordination

17.90

NP_Agreement

79

2.72

46

55

25

37

7.96

34.7

4.89

18.47

10.46

3.42

1.62

40

29

72.7

78.4

S_Types 235 180 6.53 17.92

C_Diathesis−Passive

2.50

35

126

27

70.0

6.19 21.11

NP_Modification

3.04

83

23

71

85.2

7.03 15.54 2.47 62 87.3

C_Agreement 68 49 5.94

C_Tense−Aspect−Modality

12.78

83

1.67

79

42

5.77

85.7

13.94

NP_Coordination

2.29

55

72

28

91.1

6.07 11.29 3.42 24 85.7

C_Complementation 179 108 5.52

C_Negation

14.27

C_Modification

58

2.27

174

44

100

121

5.30

92.6

7.36

9.80

Total

16.04

2.10

1184

2.82

39

871

89

88.6

6.48

73.6

15.55

Phenomenon

2.48

total
items

#

(generated by [incr tsdb()] at 26−nov−98 (19:03) −  (c) oe@coli.uni−sb.de)Figure 5: Coverage Pro�le for the LinGO erg on an instance of the CSLI test suite.Columns are (from left to right): tsnlp phenomenon name, total number of test items,number of grammatical test items, average test item length, average number of lexicalentries per test item, average number of readings per test item, total number of test itemssuccessfully parsed, and percentage of grammatical items parsed; comparing columns 4 and5 provides a measure of lexical ambiguity, while column 6 indicates syntactic ambiguity;for example, passive test items exhibit signi�cant lexical ambiguity because of multiplelexical entries for the copula and the passive participle; the latter also contributes to thehigher measure of syntactic ambiguity for passives.requested information, and present it in a new window. Most of the [incr tsdb()] analysiswindows have several export buttons (e.g. labeled �� ��PostScript and �� ��LATEX ) that allow theoutput of the current view into a �le of the requested format.The coverage and performance views are presented in �gures 5 and 6, as PostScriptand LATEX output respectively (see the table captions for a description of the individualcolumns); the overgeneration view is the mirror image of the coverage summary in that ituses the test items marked as ungrammatical (instead of the grammatical test items) asthe base set.In general, a condensed summary of a pro�le as presented by the `Analyze' menu oftenalready presents salient properties of a token test run and points the developer to further(typically more focused and in-depth) analysis. While the coverage and overgenerationviews mostly aim to summarize properties of the grammar used (i.e. competence and am-biguity measures), the performance summary has its focus on system behaviour, viz. onresource consumption and parser e�ciency. Yet, it may still be desirable for a grammar(Draft of October 15, 1999)



sample session | 21`lingo/nov-98/csli/98-11-20/page'Aggregate items etasks �lter edges �rst total tcpu tgc space] � % � � (s) � (s) � (s) � (s) � (kb)20 � i-length < 25 3 32482 60.0 2520 7.60 24.21 40.40 14.13 9742515 � i-length < 20 10 21992 52.5 1449 6.60 14.63 20.29 3.83 6491810 � i-length < 15 121 8483 52.4 591 2.22 5.46 7.06 0.60 247785 � i-length < 10 853 3194 57.9 279 0.93 2.21 3.04 0.32 115110 � i-length < 5 303 1209 61.0 116 0.30 0.86 1.41 0.27 5099Total 1290 3437 56.8 284 0.96 2.34 3.26 0.40 11863(generated by [incr tsdb(1)] at 26-nov-1998 (19:06 h) { (c) oe@coli.uni-sb.de)Figure 6: Performance Pro�le for the LinGO erg on an instance of the CSLI test suite.Columns are (from left to right): the aggregation criterion (e.g. test items with a lengthof 20 to 25 words for the top row), the number of test items per aggregate, the averagenumber of parser actions executed, the average percentage of potential parser actions�ltered (i.e. not executed), the average number of edges built (active plus passive, whereapplicable), the average times to �nd the �rst reading and all readings (in seconds), averagetotal cpu time used and share of garbage collection (gc) time, and the average amount ofmemory allocated (in kbytes) while parsing; the aggregation scheme chosen in the exampleindicates a strong correlation between the input sentence length and the amount of workdone in the parser (e.g. when quanti�ed by the number of tasks executed or the total timeand space requirements) | as should be expected.writer to inspect the performance pro�les regularly, as, for example, an underspeci�ed rulemay well create large numbers of spurious edges (local ambiguity) without any noticeableincrease in the number of readings obtained (global ambiguity). Similarly, system develop-ers that take a token grammar (and its properties) as given could still use the competencepro�les to gauge ambiguity in dependency to the average input length, for example, asthey are tuning the system to reduce lexical ambiguity (by use of a suitable �lter, say).For all three (tabular) `Analyze' summaries, the aggregation scheme can be adjusteddynamically. While aggregation by phenomenon classi�cation (if available) is chosen bydefault, the `Options {Aggregate By' menu provides a choice of aggregate computation byseveral relevant properties of the data set, such as, for example, the item grammaticalityor string length, the degree of lexical or phrasal ambiguity, parsing complexity metrics, ortime or space requirements. In addition, the `Options {Aggregation Parameters' dialogueallows the adjustment of the following parameters:� aggregate size the width of each aggregate interval, i.e. the number of units alongthe current aggregation dimension that fall into a single class (default value is 1);� aggregate threshold the minimum number of elements per aggregate: aggregates thathave fewer members (sparse data) will be supressed (default 1);� lower bound the lower aggregation boundary used: data points with a value (alongthe current dimension) below this limit will be ignored (default 0);� upper bound the upper aggregation boundary used: data points above this limitwill be ignored; the upper bound parameter can be left empty (unset) to representin�nity (i.e. no upper bound, the default).(Draft of October 15, 1999)



22 | [incr tsdb()] competence and performance laboratoryThe `Aggregation Parameters' dialogue pops up in the minibu�er as follows�� �
size 5 threshold 1 lower 0 upper�� ��Tab and �� ��Shift-Tab move between input �elds; the �� ��Up and �� ��Down arrow keys incrementand decrement values, respectively; see the balloon help for additional key bindings. Ag-gregation by string length with an aggregate size of 5 was used to create the performancepro�le given in �gure 6.Besides the tabular views, the `Analyze' menu also allows the graphical presentation ofindividual pro�les. Again, there is a large degree of 
exibility, controlled by the followingswitches:� `Analyze {Graph By' is a cascaded menu that selects the x axis for the graph tobe drawn, i.e. the dimension along which data points are plotted; the choice isvery similar to the `Options {Aggregation Parameters' seen before and (as of January1999)11 includes string and lexical length, the numbers of readings, parser tasks,edges et al. | �nally, graphing by test item identi�er yields singleton aggregatesthat, at least for numerically ordered test sets, give a visual clue on the distribution(and homogenity) of some parameter(s) throughout a test run;� `Analyze {Graph Values' is another cascaded menu that selects the value(s) plottedalong the y axis; the current choice includes four major groups, viz. parser actions,parser times, overall times, and chart edges built; each of the groups contains sev-eral attributes (e.g. time for �rst vs. all readings) that can be selected or deselectedindividually; as the `Graph Values' menu (like a few others) often requires severalselections at a time, it allows the use of the middle mouse button (instead of thedefault left mouse button) to (de)activate entries and leave the menu visible; selec-tion of another group or attribute from another group deactivates all incompatibleselections;� `Analyze {Graph Parameters' �nally, pops up an input dialogue similar to the ag-gregation parameters shown above; the four input �elds have the same names andmeanings for graph computation as for aggregation and table layout.To see how the graphing component works, the default values for all the switches willinitially be su�cient; `Analyze { Show Chart' produces the barchart given in �gure 7 (top),viz. a distribution of aggregate sizes along the i-length (input string length) dimension.Clearly, the test set (the CSLI test suite in this example) only contains a very smallnumber of test items longer than twelve words, above 15 we �nd only occasional datapoints. Hence, it seems desirable to restrict the graph view to test items below that upperbound: the `Analyze {Graph Parameters' dialogue allows the adjustment of that parameter.Figure 8 shows the output of the `Analyze { Show Graph' command for the (default)`Parsing Times' group: the x axis range has been limited and additional attributes (tcpuand tgc from the compatible `Overall Times' group) were added to the list of graph values(see section 5.2 for the precise semantics of the individual �elds). Finally, the bottom of�gure 7 presents the distribution of parser tasks by item identi�er (i.e. the substantial11In fact, a larger number of attributes from a competence and performance pro�le could be used as theaggregation or graphing (x axis) dimension. The author explicitly welcomes comments and suggestions forextension. (Draft of October 15, 1999)



sample session | 23

1 3 5 7 9 11 13 15 17 19String Length (`i-length')050100150200250 Aggregate Size (Number of Test Items)
(generated by [incr tsdb(1)] at 20-nov-1998 (21:17 h) - (c) oe@coli.uni-sb.de)

Figure 7: Barchart distribution of aggregate size by string length (top) and graphicaldistribution of parser tasks throughout test run (bottom); the graphs suggest that thetest set is very sparsely populated with test items longer than twelve words and thatparsing complexity di�ers immensely across the test set.(Draft of October 15, 1999)



24 | [incr tsdb()] competence and performance laboratory
gc time

first reading

all readings

total cpu time

Parsing Time

String Length (‘i−length’)

2 4 6 8 10 12 14

0

5

10

1 3 5 7 9 11 13 15String Length (`i-length')024
6810
1214 Parsing Time

(generated by [incr tsdb(1)] at 20-nov-1998 (21:20 h) - (c) oe@coli.uni-sb.de)� � � � � � � � � � � � � � �� � � � � � � � � � � � � � �
? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

� � � � � � � � � � � � � � �
� | �rst reading� | all readings? | total cpu time� | gc time

Figure 8: Graphical view of various parsing time metrics in [incr tsdb()] (encapsulated)PostScript (top) and PICTEX (bottom) formats; both formats are fully scalable in size;as of January 1999, only the PostScript output mode allows logarithmic scaling of axes,though. (Draft of October 15, 1999)



sample session | 25variation of parsing complexity throughout the test run) obtained from changes to both`Graph By' and `Graph Values'; additionally, note that any upper limit imposed on x axisvalues (15 for string length in the above examples) has to be reset in `Graph Parameters'.4.6 Comparison to Earlier Test RunsAs errors are diagnosed and corrected, or as the grammar is modi�ed to extend coverage toadditional phenomena, it is often necessary to see how the current version of the grammaror system compares to a previous instance. This evaluation of progress in grammar andsystem development is facilitated by the commands from the `Compare' menu, allowingdevelopers to construct summary reports that concisely contrast salient characteristics fortwo test suite instances.To obtain a contrastive summary, the two test suite instances to be compared haveto be selected out of the current working set. In addition to the active pro�le (selectionwith left mouse button), the (second) pro�le that will be used as the source (or base) forcomparison (i.e. the one that is compared to) can be selected either (i) by means of the`Compare { Source Database' menu or (ii) by clicking the middle mouse button on an entryin the podium body. As a metaphor for progress evaluation (e.g. while working towards animproved version of the grammar or system), the source data set is often referred to as the`(g)old standard' reference to which the current (new) results are compared; accordingly,the source for comparison is highlighted in gold in the podium body. Once developerscommit themselves to a new grammar or system version (instance), the newer data canthen serve as a gold standard for future experimentation.One such view of progress, given in Figure 9, shows how grammatical competence (ofthe LinGO erg) changed over the course of about one year: as before aggregated accordingto (coarse-grained) linguistic phenomena, the competence progress pro�le shows where theanalysis of a particular phenomenon has improved and where not.The grammatical coverage has increased signi�cantly for many phenomena; wherecoverage has dropped slightly, overgeneration and the number of analyses generated werereduced at the same time. In general, the comparison reassures the grammar engineer thatthe work on constraining the grammar more rigidly towards the intended analyses (sincethe same grammar is recently deployed for generation purposes) is going the right direction(as should be expected). Oepen and Flickinger (1998) present a more detailed discussionof the interpretation of individual and constrastive pro�les and the use of multiple testsets.For grammars that can be processed on multiple platforms12 the comparison of com-petence can serve an additional purpose. When comparing platforms (or debugging), it isessential to obtain a precise account of how the same (version of a) grammar behaves oneither system; such comparison typically greatly helps in the understanding of (formal orpractical) di�erences between platforms.The complementary comparison of performance pro�les tyically proofs useful in systemoptimization (i.e. tuning it to improved run-time behaviour) and, again, contrastive com-parison between platforms. While it remains to be seen whether and which insights can beobtained from comparing across grammar and systems simultaneously, clearly the com-parative table in �gure 10 (top) | contrasting salient performance characteristics of lkb12As of January 1999, the LinGO erg loads into both lkb and page; at least two other systems, viz.the abstract machines developed at Tokyo University and DFKI Saarbr�ucken, are expected to use it in thenear future (Draft of October 15, 1999)



26 | [incr tsdb()] competence and performance laboratory`lingo/oct-97/csli/97-11-26/page' vs. `lingo/nov-98/csli/98-11-20/page'October 1997 November 1998Phenomenon lexical parser in out lexical parser in out� � % % � � % %S Types 3.57 2.53 68.3 16.4 2.74 2.49 70.0 18.2C Agreement 2.73 1.76 81.6 57.9 2.12 1.57 85.7 57.9C Complementation 3.05 2.76 91.7 25.4 2.55 2.33 92.6 31.0C Diathesis-Active 3.12 2.70 34.7 47.1 2.35 2.67 34.7 47.1C Diathesis-Passive 4.21 3.64 88.9 50.0 3.31 2.96 85.2 37.5C Tense-Aspect-Modality 3.19 3.38 82.3 100.0 2.42 2.25 91.1 100.0C Negation 2.93 2.63 93.2 0.0 1.79 2.10 88.6 0.0C Coordination 2.87 3.36 78.2 29.2 2.32 3.34 72.7 29.2C Modi�cation 2.98 2.69 66.1 35.8 2.16 2.74 73.6 43.4NP Agreement 3.47 2.44 81.1 44.4 2.15 1.61 78.4 44.4NP Modi�cation 2.78 2.33 80.3 8.3 2.17 2.44 87.3 8.3NP Coordination 2.17 3.42 89.3 66.7 1.90 4.17 85.7 40.7Total 3.12 2.75 74.9 32.9 2.38 2.50 77.0 33.2(generated by [incr tsdb()] at 28-jan-1999 (15:46 h) { (c) oe@coli.uni-sb.de)Figure 9: Competence Progress Pro�le comparing the October 1997 and November 1998versions of the LinGO erg: the columns repeat salient properties from the individualcompetence pro�les, viz. the lexical and syntactic ambiguity measures and the overallcoverage (`in') and overgeneration (`out ') percentages.and page on the same grammar | points to several relevant similarities and di�erencesbetween the two systems:� both systems indicate a strong mutual dependency between the number of parsertasks executed (i.e. calls to the uni�er) and the time and space consumption; thus,overall system performance crucially depends on uni�er throughput (as should beexpected);� analysing wellformed input and enumerating all readings is signi�cantly more cost-intensive than rejecting ungrammatical input; for both systems, all three parsingcomplexity measures given uniformly show that processing illformed test items re-quires about two thirds (67 { 71%) of the resources used when dealing with gram-matical input;� in total, lkb processes sentences somewhat faster; while executing almost the samenumber of parser tasks (only about 5% less than page) it requires close to 30% lessprocessing time and less than half of the space.However, when comparing the additional information in the bottom of �gure 10, viz.the total results from the individual performance pro�les, more striking di�erences mani-fest themselves� because (in exhaustive search mode, at least) lkb uses a breadth-�rst parser, thetime to �nd a �rst reading is essentially the same as the overall processing time;though it may seem puzzling that the �rst value is actually higher than the totaltime, this is due to the fact that timing information for individual readings is onlyavailable for items that were successfully analyzed; thus, the average is computed(Draft of October 15, 1999)



sample session | 27

`lingo/nov-98/csli/98-11-20/page' vs. `lingo/nov-98/csli/99-01-29/lkb'PAGE LKB reductionAggregate tasks time space tasks time space tasks time space� � (s) � (kb) � � (s) � (kb) % % %i-wf = 1 3758 3.58 13043 3587 2.56 5863 4.6 28.5 55.0i-wf = 0 2655 2.47 8983 2421 1.73 4054 8.8 30.1 54.9Total 3437 3.26 11863 3249 2.32 5338 5.5 28.9 55.0Platform items etasks �lter edges �rst total tcpu tgc space] � % � � (s) � (s) � (s) � (s) � (kb)PAGE 1290 3437 56.8 284 0.96 2.34 3.26 0.40 11863LKB 1293 3249 87.9 200 2.47 2.15 2.32 0.17 4653(generated by [incr tsdb()] at 30-jan-1999 (15:06 h) { (c) oe@coli.uni-sb.de)Figure 10: Performance comparison between lkb and page on the November 1998 ver-sion of the LinGO erg and the CSLI test suite; here, the contrastive summary (top) isaggregated according to item grammaticality (wellformedness) as annotated in the inputdata (where `i-wf = 0 ' means grammatical) to highlight the corresponding di�erence inparsing complexity; again the individual columns repeat salient properties from the indi-vidual performance pro�les and (in the rightmost block) indicate how they relate to eachother (the space reduction of 55%, for example, means that lkb on average requires lessthan half of the memory allocated in page | a reduction of 90% would correspond toa factor of 10, i.e. one order of magnitude); the bottom table repeats the total numbersfrom the individual pro�les (compare to �gure 6) to further illuminate the cross-platformcomparison.

(Draft of October 15, 1999)



28 | [incr tsdb()] competence and performance laboratoryover a subset of the test items and should be compared to the value for `i-wf = 1 'in the table above (2:56 seconds);13� as page uses an active chart parser while the lkb parser is purely passive, the numberof edges recorded cannot be compared straightforwardly (280 for page is the sum ofactive and passive edges); since on average about 40% of the total edges are active,this suggests, that page actually builds signi�cantly fewer (passive) edges;� the observation on edges is supported from a comparison of the substantially di�erent�lter rates obtained in the parser:14 for page the 3437 tasks that were e�ectivelyexecuted manifest about 43% of the total number of parser actions created (i.e. theinverse of the �lter e�ciency rate), while in lkb the very similar number of executedtasks (3249) presents a much smaller fraction of the overall number of tasks createdin the parser (viz. only about 12%); hence, lkb has postulated more than threetimes as many parser actions as has page;� while part of the projected di�erence in postulated tasks can be explained by thepassive nature of the lkb parser | it has to recompute rule applications that inpage would be represented as an active edge (at the cost of creating edges that maynever yield a passive edge because successive daughters cannot be instantiated) |the vast mismatch in the numbers and the larger inventory of passive edges created(as noted above) point to another di�erence in parsing strategy: in contrast to thelkb parser, page deploys a bidirectional head-driven parsing strategy; since abouthalf of the grammar rules have fairly unrestricted leftmost (or rightmost) daughtersthat are only constrained once another daughter (often but not always the linguistichead) has been instantiated, the unidirectional lkb parser executes those rules manymore times and thus gives rise to the observed proliferation of parser actions;� summing up, the in total superior performance of lkb is most likely an e�ect ofbetter uni�er throughput (especially noticeable in the 55% di�erence in memoryconsumption) that overcompensates a less e�cient parsing strategy; as there is noprincipled obstacle to combining the two approaches (or even modules), the perfor-mance pro�ling suggests there is room for a signi�cant improvement in processinge�ciency.From this very detailed (and maybe sometimes longish) example of performance pro�leanalysis and comparison, at least two conclusions should become clear: (i) the in-depthstudy and correlation of several parameters can greatly help in the identi�cation of relevantsystem properties and guide developers to ways of tuning a system; and (ii) the contrastive13Strictly speaking, the grammaticality annotation does not necessarily imply that an item can actuallybe parsed. An aggregate on the basis of `readings � 1 ' (at least one analysis was obtained) would thereforebe the correct reference set; see section 4.7 below on how to restrict the data set accordingly.14Both systems deploy a mechanism to avoid parser actions (i.e. expensive uni�cation) that can bepredicted to fail: while (in the November 1998 version ) lkb maintains vectors of feature values embeddedat paths that are known to have the highests failure potential, and validates compatibility of those vectorsbefore doing the actual uni�cation, page uses a table of rule incompatibility information compiled (o�-line) from the input grammar; the average �lter rate quoted in the performance pro�le is the percentageof parser tasks that were postulated but �ltered prior to execution. The lkb on-line quick check achievessigni�cantly better �lter rates at slightly higher cost (restricted type uni�cation vs. table lookup); recently(January 1999), the two systems have been synchronized to both use a pipeline of table lookup plussubsequent quick check and now obtain almost identical �lter rates.(Draft of October 15, 1999)



sample session | 29view of two performance pro�les given in the top of �gure 10 reveals relevant informationbut cannot substitute for the more detailed individual pro�le summaries | both havetheir virtues in their own right.4.7 Zoom: In-Detail Pro�le Comparison and AnalysisAlthough all discussion of pro�le analysis and comparison so far was based on summariesof aggregated data (exploring some of the available variety in aggregation schemes), theunderlying database concept allows the inspection of results at a �ner degree of granu-larity. The `Detail' and `Options' menus (the latter when used in conjunction with othercommands) provide several ways to zoom in and obtain in-depth views on the data, ofwhich the following paragraphs present three by example.Firstly, the commands in the `Detail' menu implement the comparison between twopro�les on a per-item basis. The approach is in many respects similar to the Un�x textutility diff(1) but scaled up for structured data sets; the following set of switches allowsthe customization to user needs:� `Source Database' is the same as in the `Compare' menu; allows the selection of thesource data set to which the active pro�le will be compared; alternatively, use themiddle mouse button in podium body;� `Phenomena' can be used to restrict the comparison to a subset of the linguisticphenomena (assuming phenomena information is available in the pro�les); the menuallows multiple selections (use the middle mouse button to toggle individual entriesand keep the menu on display) that will be interpreted as a disjunctive conditionwhen selecting data (see example below); the default is to use the full data set (i.e.all phenomena);� `Decoration' allows to choose properties of test items (i.e. attributes from the an-notations in the test suite skeleton) that will be presented in the display as deco-ration for the actual pro�le data; while the item identi�er is always included, thechoice of additional attributes (as of January 1999) is limited to the actual itemstring (i-input), the grammaticality code (i-wf ), and the root category for the item(i-category); i-input is enabled by default (again, `Decoration' is a multi-selectionmenu);� `Intersection' �nally, is the central parameter in per-item comparison: this (multi-selection) menu requires that at least one attribute from the pro�le data (i.e. informa-tion speci�c to individual test suite instances) is selected to be used for comparison;only items that di�er15 in the attribute(s) chosen are included in the display andshow the con
icting values from both pro�les; items that are only included in of thedata sets or di�er in one of the decorating �elds are printed separately with emptyintersection values for one pro�le;Figure 11 presents an example that goes back to the competence comparison doneearlier for two versions of the LinGO erg (see �gure 9). As the `C Diathesis-Passive'15As of January 1999, the comparison on values is by equality check only; therefore, the choice ofintersection attributes is comparatively small (there is little point in comparing time or space metrics, aseven the very same con�guration of system and grammar may result in minor di�erences for these �elds;let alone semantic formulae). Again, it is expected to enlarge the range of comparison functions in thenear future; thus, comments on user requirements are especially welcome.(Draft of October 15, 1999)



30 | [incr tsdb()] competence and performance laboratory`lingo/oct-97/csli/97-11-26/page' vs. `lingo/nov-98/csli/98-11-20/page'i-id i-wf i-input (g)old newreadings readings232 1 Abrams knew it to be true that Browne hired Chiang . 2 1234 1 Abrams made Browne hire Chiang . 1 0258 1 Abrams was known to be interviewing Browne . 8 6259 1 Abrams was known by Chiang to be interviewing Browne . 17 12260 1 Abrams was known to be interviewing Browne . 8 6261 1 There was known to be a bookcase in Browne's o�ce . 6 1262 1 It was known to be time for an interview . 20 10263 1 It was known to be true that Abrams hired Browne . 3 1267 1 Abrams was made to interview Browne . 2 4268 0 Abrams was made interview Browne . 1 0... ... ... ... ...Figure 11: Pro�le comparison on a per-item basis (for the `C Diathesis-Passive' phe-nomenon that exhibits a mild loss of coverage, signi�cant reduction in overgeneration, andoverall elimination of ambiguity in �gure 9); only items that con
ict in at least one of the�elds selected for comparison are included in this view; items # 234 and 268 present re-duced coverage and overgeneration, respectively; the overall number of readings obtainedhas decreased for most of the examples.phenomenon shows interesting di�erences at the aggregate level, the con�guration in thissample view includes the i-wf �eld in the decoration, restricts the data to the phenomenonin question, and intersects on the number of readings obtained for the two versions.Double-clicking (the left mouse button) on the i-input �eld in the detailed comparisontable, as usual, makes the host platform process the test item interactively, i.e. withall debugging output enabled according to the current system con�guration. Interactiveprocessing is often useful, for example, to see what the actual analyses obtained from thesystem are. This, obviously, presupposes that the host platform has been loaded with thesuitable grammar and is operational.Secondly, the tools introduced already for browsing and analyzing the data can beused in combination with suitable restrictions on the data to select and visualize relevantsubsets. Again on the granularity level of individual test items, for example, a grammarengineer is most likely to request a listing of input that constitutes inadequacies in gram-matical competence (as observed on the aggregate level of linguistic phenomena, say).Assuming that the test suite was at least annotated with judgements on grammatical-ity, the following paraphrased queries to the database correspond to lack of coverage andovergeneration, respectively:� lack of coverage list test items (plus relevant properties) that are annotated asgrammatical but failed to parse;� overgeneration list test items (plus relevant properties) that are tagged ill-formedbut accepted by the parser (i.e. were assigned at least one analysis).Although a demonstration of the [incr tsdb()] query language is included towards theend of this sample session, luckily, the user interface provides a few common selectionalconditions as hard-wired choices in the `Options' menu. To realize the overgeneration query,(Draft of October 15, 1999)



sample session | 31for example, select `Illformed' plus `Analyzed' from the `Options {TSQL Condition' menu(e.g. using the middle mouse button in activating entries to take advantage of the multi-selection feature) and execute any one command from `Browse {Test Items' or `Browse {Parses' to display the subset of items from the current pro�le that satisfy the condition.Note that, in contrast to the selection of phenomena seen before (e.g. in the `Detail' menu),the set of TSQL conditions chosen is applied conjunctively, i.e. only test items that meetall active conditions are selected.16 Once more, double-clicking on the i-input �eld triggersinteractive processing to ease debugging.Arbitrary TSQL conditions (going beyond the hard-wired choices in the user interface)can be composed by means of the `Options {New Condition' command, are then dynamicllyadded to the `TSQL Condition' list, and can be applied conjunctively with other conditions.Yet, the composition of custom TSQL conditions presupposes a detailed knowledge of theunderlying database organization (see `Browse {Database Schema', the examples below,and section 5.2) as only experienced [incr tsdb()] users command it; to ease experimenta-tion, the condition input dialogue that pops up in the minibu�er supplies context-sensitivecompletion of attribute names (pressing �� ��Tab once completes unambiguous pre�xes, twicedisplays the list of available completions) and a query history that can be traversed usingthe �� ��Up and �� ��Down arrow keys. [incr tsdb()] windows created while a selectional condi-tion is in e�ect show the TSQL representation of the condition used as part of the windowtitle (in square brackets); always remember that summary views on a pro�le may varysubstantially for di�erent subsets of the data.Finally, the `Browse {Custom Query' command allows the input of full TSQL clausesconsisting of(i) a selection of attributes from the data set to project and display (`select' clause),(ii) (optionally) one or more relations to use in the selection (`from'),17and(iii) (optionally) a | possibly complex | condition imposed on the selection (`where').To complete the guided tour of the [incr tsdb()] package, the query concept is introducedby example presently but not discussed in any formal detail.Selecting `Custom Query' from the `Browse' menu pops up three consecutive input di-alogues corresponding to the query clauses (i) { (iii); optional clauses (i.e. `from' and`where') can be left empty and skipped using the �� ��Return key; again, �� ��Tab providescontext-sensitive completion (on attribute names or relations, as appropriate) and �� ��Upand �� ��Down navigate in the history of prior input. To give a simple example, the followingquery is equivalent to the `Browse {Phenomena' command (listing the identi�ers, names,authors, and dates of construction of all phenomena encoded in the data set) and (on oursample instance of the CSLI test suite) yields the display shown in �gure 3 above:16This conjunction includes the choice made by phenomenon, if any, in the `Browse' submenus; therefore,the browse commands `All Test Items' or `All Parses', respectively, now display all entries that match thespeci�ed condition.17Since the tsdb query processor | simplifying greatly in contrast to regular SQL | can infer theset of relations required to satisfy a query from the set of attributes used, it is usually not necessary tospecify the `from' clause. Only where attributes are shared between relations and the corresponding values(potentially) di�er, the speci�cation of the relation(s) requested will be desirable; besides, in some cases(complex join operations) the `from' clause can be used to optimize the query processing.(Draft of October 15, 1999)



32 | [incr tsdb()] competence and performance laboratory�� �
select p-id p-name p-author p-date18As a second (slightly more rewarding) sample query, let us return to �gure 8 (corre-lating input length and parsing time): in the segment up to a sentence length of, say, tenwords (where aggregate sizes should be large enough and not sparse), the graph exhibitsnoticeable peaks for i-length values of three and nine words. To see which individual testitems in these two aggregates require overproportional processing times, the query�
 �	select i-length i-input i-id tcpu tgc�
 �	where (i-length = 3 && tcpu >= 100) || (i-length = 9 && tcpu >= 200)can be executed to extract the following table (reproduced partially):i-length i-id i-input tcpu tgc3 86 There is programmers . 187 873 795 Browne merely doesn't work . 420 1883 366 Does there be a bookcase in Browne's o�ce ? 487 0... ... ... ... ...9 452 Abrams does not know who was hired by Browne . 1034 1809 394 Does Abrams work for Browne or work for Chiang ? 1206 173... ... ... ... ...Again, only the aggregated view in combination with the inspection of data at a �ner-grained level of granularity reveals properties of the data set that would very likely bemissed otherwise,19 viz. that� the i-length values for several test items are incorrect (in the test suite skeletonalready); apparently apostrophes in the i-input �eld break the word counting duringtest data import into [incr tsdb()]; and that� test items of nine word length are ideosyncratically rich in their use of auxiliariesand coordination, two phenomena that largely contribute to lexical and global am-biguity and, accordingly, parsing complexity; similar ideosyncracies are typical forsmaller collections of systematically constructed test data (test suites in the tradi-tional sense) and can often be avoided when aggregating by lexical ambiguity (i.e.the words �eld) rather than string length.The last example demonstrates how the [incr tsdb()] approach can be used in tuninga system for a particular application (and domain): in the VerbMobil project20 the page18Remember that, to execute the query, the optional `from' and `where' clauses have to be skipped; thus,input the attribute names into the `select' window (experiment with the completion facility) and then press�� ��Return three times.19This argumentation has strong empirical support: the erroneous i-length annotations in the CSLItest suite skeleton slipped through unnoticed for more than a year, while the data set was in heavy useand frequently inspected at other levels of granularity. Obviously, this �nding of the presentation will becorrected in the data distributed with [incr tsdb()] such that it shall not be reproducable in releases startingFebruary 1999.20VerbMobil is a German research and development project working on a machine translation prototypefor spoken (face-to-face) dialogues in the domain of appointment scheduling.(Draft of October 15, 1999)



sample session | 33platform is adapted for linguistic analysis of speech recogniser output. As the analysiscomponent in this application can only be granted a limited time slice to compute (atleast) one analysis, an upper limit on the number of parser actions that can be executed isimposed (as of November 1998, the limit chosen is 4000 tasks). By means of the following[incr tsdb()] query, typically applied to a pro�le obtained from processing test data fromthe target domain (with no limit imposed):�
 �	select i-id i-input r-etasks time tcpu�
 �	where result-id = 0 && r-etasks > 4000developers can inspect the set of test items (from the training set) that require more than4000 tasks for the �rst reading (`result-id = 0 ') already and, hence, will be lost whenimposing the speci�ed limit.4.8 Some Useful SwitchesBesides the `Database Root' command from the `Options' menu (used in section 4.1 aboveto adjust the pro�le repository) the following facilities may be useful at some point inindividual experimentation with the machinery:� `Skeleton Root' prompts for a new directory containing test suite skeletons and theupdates the choice in the `File { Create' menu; while the default [incr tsdb()] distribu-tion ships with English skeletons enabled, this command can be used to activate theGerman or French tsnlp test suites, some German VerbMobil corpus data, and addi-tional German material (made available by Stefan M�uller of DFKI Saarbr�ucken) thatall are included with the distribution; skeletons are organized into language-speci�cgroups, such that by choosing, say, `src/tsdb/skeletons/deutsch' (relative to theroot directory of the [incr tsdb()] source tree at your site) German data becomesavailable;� `Update' reinitializes part or all of the [incr tsdb()] podium state; while relevantchanges (e.g. to the database root) usually cause an automatic update, the `Update {Skeleton List' or `Update {Database List' commands can be used to force reloadingthe necessary information and adjustment of podium status;� `Switches { Exhaustive Search' toggles the exhaustive search switch of the lkb andpage processors (on by default); deactivating exhaustive search makes the parserreturn when a �rst analysis was found which can speed up processing a test runsigni�cantly; however, remember that non-exhaustive pro�les only contain partialinformation and should not be compared to complete data sets;� `Switches {Overwrite Test Run' makes [incr tsdb()] overwrite existing test run infor-mation (if any) in the current pro�le or preserve it and append to the pro�le; whenenabled (the default), [incr tsdb()] performs the equivalent of the `File { Purge' oper-ation before the start of a new test run; cumulative pro�les are rarely useful, sincethey require the use of TSQL conditions to distinguish between the various test runsrepresented in the data set;(Draft of October 15, 1999)



34 | [incr tsdb()] competence and performance laboratory� `Switches {Autoload Vocabulary' �nally, toggles the autoloading of vocabulary priorto starting a new test run (on by default); disabling this switch can save time whenthe necessary vocabulary is known to be loaded (e.g. from a previous test run) orwhen it is desirable to include lexical access time in the accounting.4.9 Recommendations for Future Experimentation

(Draft of October 15, 1999)



reference manual | 355 Reference Manual5.1 [incr tsdb()] Architecture5.2 Contents of [incr tsdb()] Pro�les5.3 Storage and Reconstruction of Derivations5.4 The Menu Structure5.5 Visualization and Analysis of Pro�les5.6 Comparison among Pro�les5.7 Data Selection and Aggregation5.8 TSQL syntax5.9 Importing Data5.10 Customization: `~/.podiumrc' and `~/.tsdbrc'5.11 Known Problems and CaveatsFollowing is a list of known [incr tsdb()] problems that | for various reasons | have notbeen solved; where appropriate instructions on how to avoid or handle a speci�c problemare supplied:(1) Allegro CL { [incr tsdb()] communication: once in a while the [incr tsdb()] podiummay freeze, usually while processing a user request and displaying the busy cursor(small wristwatch); here, frozen really means that over some unusual period of timenothing (except, maybe, the display of the current date and time) changes in thepodium window. Another symptom is that the [incr tsdb()] Lisp process claims tobe idle (e.g. as part of the minibu�er status line) at the same time. The problem inthis situation seems to be that the Lisp process fails to notice an event (a requestto perform some task) that was generated by the [incr tsdb()] podium. Typingsomething (e.g. a single �� ��Return key) into the Lisp interpreter usually seems to besu�cient to wake up the Lisp process and make it process pending events.(2) Tcl/Tk background errors: under rare circumstances the Tcl/Tk interpreter (the pro-cess displaying the [incr tsdb()] podium window(s)) may fail to handle asynchronousevents properly. Asynchronous events are generated, for example, whenever the [incrtsdb()] Lisp process enters a garbage collection and requests that the podium cursorbe changed into the gc cursor (skull and bones). It seems that Tcl/TK internal stateis sometimes corrupted, if an external event is delivered while the Tcl/Tk alreadyhas a substantial event queue to process; the problem may result in a pop-up dia-logue window reporting some spurious Tcl/Tk background error. It seems safe toacknowledge and ignore these background errors by clicking the �� ��OK button on theleft of the pop-up dialogue; typically, the podium can then resume normal operation.(3) Start-up problems: running Allegro CL from a shell (rather than through the farmore comfortable emacs(1) interface) and using the user-speci�c start-up �le `~/.clinit.cl'or the `-L' or `-e' command line arguments to load and start [incr tsdb()], can freezethe Tcl/TK process running the [incr tsdb()] podium. Apparently, the Allegro CL(Draft of October 15, 1999)



36 | [incr tsdb()] competence and performance laboratorystandard io system is not completely initialized during command-line processing suchthat the environment inherited from the shell (from which the Lisp is started) inter-acts very badly with the creation of the podium process during Allegro CL start-up.Until the problem can be resolved, it can be avoided by (a) using the Allegro CL{ emacs(1) interface or (b) loading and starting [incr tsdb()] interactively after theLisp start-up has completed (see section 2.5). Typically, this problem will only af-fect users of the lkb image distribution that want to take advantage of the short-cutprocedure described in section 2.5.5.12 Options and Parameters5.13 [incr tsdb()] Command-Line Interface5.14 tsdb Database Format

(Draft of October 15, 1999)



application program interface | 376 Application Program InterfaceInitially, the [incr tsdb()] package was developed as an extension to grammar developmentplatforms (viz. the page and lkb systems) implemented in Common-Lisp; therefore, ear-lier versions of the pro�ler were loaded into the same Lisp universe as the grammar devel-opment system (called the host platform; see section 3). This setup | sometimes referredto as integrated or embedded mode | allows [incr tsdb()] to call a set of Lisp functions tointeract with the host platform directly.Though [incr tsdb()] embedded mode still is the default setup for lkb and page, it is notsuited to connect the pro�ler to non-Lisp systems like CHiC and LiLFeS (both implementedin ANSI C). To simplify integration with additional platforms, the [incr tsdb()] distributedmode was devised: building on a clean (and simple) ANSI C application program inter-face, processing systems run as clients to a a stand-alone [incr tsdb()] server process andcommunicate by means of a general interprocess protocol. The Parallel Virtual Machine(pvm) model (see below) was chosen for interprocess communication in distributed mode;this not only allows users to run [incr tsdb()] on one host while the processing system itselfcan reside on a di�erent machine (i.e. distribution across a local network or the InterNet),at the same time it facilitates parallelization of test runs: a single [incr tsdb()] instancecan communicate with multiple processors (typically on multiple machines) and distributeprocessing among the clients. To deal with typical robustness issues in distribution (e.g.network or host failure), the [incr tsdb()] distributed mode monitors client status andreschedules tasks when clients become unavailable.Parallelization of test run processing in lkb and page (or potentially other Lisp-based systems) is achieved by virtue of a Lisp binding for the [incr tsdb()] applicationprogram interface. Hence, arbitrary processing systems can connect to the [incr tsdb()]distributed mode as long as they provide a functional interface that obeys the C callingconventions (possibly on the basis of foreign function facilities in Lisp or Prolog systems).The following sections summarize the steps required in adapting a new processing systemto [incr tsdb()] distributed mode. The application program interface continues to evolvewith the integration of additional processors; developers are therefore encouraged to seekassistance and feedback from the [incr tsdb()] contact address (see the preface sectionabove) | especially if their site is based in a sunny, dry, and urban part of this planet (orhas direct beach access).6.1 Connecting [incr tsdb()] to Another ProcessorIntegrating the [incr tsdb()] pro�ler with a new processor (typically a grammar-basedparsing system) requires two basic steps:� interface setup a set of interface functions as speci�ed in the [incr tsdb()] appli-cation program interface (see below) has to be provided; then, the processor can belinked with the [incr tsdb()] side of the interface (called the client library) and, on re-quest, go into client mode; this mode blocks the client application until a processingrequest is received from the [incr tsdb()] controller: the application program interfacethen executes the corresponding client function and relays the result returned by theprocessor to [incr tsdb()];� parameter identi�cation and adaption though the [incr tsdb()] data model aimsto record system competence and performance in generalized (non-system-speci�c)(Draft of October 15, 1999)



38 | [incr tsdb()] competence and performance laboratoryterms, typically not all parameters foreseen in [incr tsdb()] pro�les (see section 5.2)will be applicable (or available) for all processors; likewise, applications may wantto record additional system-speci�c information (or request application-speci�c for-mats). It can sometimes require more e�ort to extract the relevant information fromthe processor (say, if the system did not record processing statistics already) thanto establish the interface proper.From previous integration experience (viz. with the lkb and CHiC systems) it seemsmost practical to aim for stepwise and iterative integration and adaptation. Since onlyvery few of the competence and performance parameters (the pro�le contents) are strictlyrequired for basic [incr tsdb()] functionality,21 it is recommended to set up and validatethe basic interface functionality before �lling in the bulk of system parameters.Abstractly, the [incr tsdb()] application program interface is comprised of four functionsthat correspond to the following tasks on the client side:� test run initialization obtain information about the current processing environ-ment (i.e. parameters in the `run' relation; see section 5.2 and the examples below);additionally, where appropriate, the client can be initialized and prepared for batchprocessing;� test item processing given a single test item at each call, process the item and re-turn system parameters (mostly stored in the `parse' and `result ' relations) obtainedwhile processing;� test run completion complementary to initialization; (may) reset client to regularprocessing mode or complete client-side accounting; as of June 1999, no additionalinformation is returned to [incr tsdb()];� tree reconstruction given a derivation tree (see section 5.3), attempt to recon-struct the corresponding phrase structure tree (i.e. replay the derivation) and returninformation about (the nature of) uni�cation failure when applicable.22The sections on ANSI C and Common-Lisp clients below (6.3 and 6.4, respectively) detailthe language-speci�c instantiations of the interface functions.6.2 Parallel Virtual MachineAs noted above, the Parallel Virtual Machine (Geist et al. 1994) message-passing modelis used for interprocess communication. pvm establishes a virtual machine (a set of cpus)from a collection of networked computers; a user-level pvm daemon on each physical node(e.g. a workstation or compute server) establishes a transparent message-passing layer thatprovides pvm applications with a uniform view of the virtual machine. Using pvm primi-tives, [incr tsdb()] can create client processes (i.e. [incr tsdb()]-aware application systems)on arbitray nodes in the virtual machine (or let pvm take the distribution decisions), trans-mit processing requests to available clients, and collect processing results (competence andperformance parameters).21Although, naturally, pro�le analysis and comparison may be severely restricted on partial data. As-suming a processor that does not �ll in any of the system-speci�c parameters, test run processing will stillbe possible; however, the bulk of [incr tsdb()] analysis functionality will be non-functional.22As of June 1999, however, reconstruction mode is not fully implemented on the [incr tsdb()] side of theapplication program interface; while integrating with the LiLFeS application, this is expected to changereally soontm, though. (Draft of October 15, 1999)



application program interface | 39The [incr tsdb()] distribution includes pvm binaries for common platforms; these bi-naries were (mildly) customized, mostly to simplify pvm startup. There should be noprincipled obstacle, however, to using existing pvm installations where available. Thatthe pvm daemons run as user-level processes means that no system-level installation orcon�guration support is required; at the same time, it obliges all users who want to deploy[incr tsdb()] in distributed mode to establish their personal pvm environment. Fortu-nately, setting things up is very simple and mostly a once-only task; the virtual machine,once established, is fully independent from [incr tsdb()] and, typically, remains availableuntil explicitly (by user request) or implicitly (system reboot(8)) terminated. The fol-lowing paragraphs summarize the necessary user action to make the pvm environmentoperational; for background information see the pvm man(1) pages distributed with [incrtsdb()] and Geist et al. 1994).User-Level Con�guration A pvm virtual machine is composed of one or more physicalhosts connected to a common network.23 Typically, individual users will have a set ofmachines available to them; the user-level pvm con�guration �le `~/.pvm_hosts' can beused to describe a group of hosts accesible to pvm that shall be joined into a virtualmachine:'

&

$

%

## list machines accessible to PVM; option fields are (see pvmd(8))## - dx: path to `pvmd3' executable (on remote host);# - ep: colon-separated PATH used by pvmd(8) to locate executables;# - wd: working directory for remote pvmd(8);# - ip: alternate (or normalized) name to use in host lookup;#&teej.is.s.u-tokyo.ac.jp dx=/home/users/oe/src/itsdb/bin/osf/pvmd3 wd=/tmp&eo.stanford.edu dx=/user/oe/src/itsdb/bin/solaris/pvmd3 wd=/tmp&eoan.stanford.edu dx=/user/oe/src/itsdb/bin/solaris/pvmd3 wd=/tmptop.coli.uni-sb.de dx=/proj/perform/itsdb/bin/solaris/pvmd3 wd=/tmpcpio.coli.uni-sb.de dx=/proj/perform/itsdb/bin/linux/pvmd3 wd=/tmpperl.coli.uni-sb.de dx=/proj/perform/itsdb/bin/linux/pvmd3 wd=/tmplimit.dfki.uni-sb.de dx=/proj/perform/itsdb/bin/solaris/pvmd3 wd=/tmplet.dfki.uni-sb.de dx=/proj/perform/itsdb/bin/solaris/pvmd3 wd=/tmpThe `.pvm_hosts' �le contains one host per line together with optional informationabout the location of the pvmd(8) executable on the target host, the working directoryand search `PATH' environment variable to be used, and other con�guration options (seethe example �le and the pvm documentation). A leading `&' character can be used toindicate that a particular machine is not to be activated by default; still, the `.pvm_hosts'entry makes con�guration data for that host available to pvm such that it can be addeddynamically on user request.23The amount of data transferred between [incr tsdb()] server and clients is modest but can be non-trivial; hence, (assuming a high-performance client) network throughput in non-local networks (or a highlycongested ethernet) may become an issue. Still, [incr tsdb()] distributed mode can make it feasible to utilizeremote cpus, typically in addition to local resources; even successful test runs across the Atlantic Oceanhave already been reported. (Draft of October 15, 1999)



40 | [incr tsdb()] competence and performance laboratoryStarting and Stopping Once the user-level pvm con�guration has been completed,the virtual machine is created by starting the pvmd(8) daemon on one (arbitrary) node ofthe con�guration. On startup, pvmd(8) will consult the `.pvm_hosts' �le and attempt tostart pvm daemons on all remote nodes automatically. Since remote pvmd(8) startup isachieved using the rsh(1) protocol, users have to make sure that the host used to startpvm has rsh(1) access to all nodes in the virtual machine (e.g. using the system-widehosts.equiv(5) or the user-speci�c rhosts(5) mechanisms).24The pvm daemon writes protocol messages into the �le `/tmp/.pvmd.debug.user '(where `user ' obviously is the active account name) that should be consulted in caseof problems. Status information on pvm can be obtained using the pvm(1) shell thatconnects to an existing virtual machine and supplies a set of user commands to query pvmstatus (especially the pvm(1) `conf' and `ps' commands). The pvm(1) command `halt' canbe used to shutdown the virtual machine (on all active nodes).25 However, it is often moreconvenient to leave an existing virtual machine alive even when it is not in active use;pvm daemons on the individual nodes can continue to run for weeks or months withoutuser interaction. Only after explicit (`halt' or `kill' in pvm(1)) or implicit (node failure)daemon termination users should have to restart the virtual machine.6.3 ANSI C ClientsThe [incr tsdb()] distribution contains a function library `libitsdb.a' or `libitsdb.so'(precompiled libraries are available for common [incr tsdb()] platforms; see appendix Afor the exact content of the current distribution and the location of the library �les) thatclients should use to connect to the ANSI C application program interface. Prototypes forthe functions used by the application to establish an [incr tsdb()] (client-side) binding aresupplied in the header �le `itsdb.h'. In [incr tsdb()] mode, basically, a client has to:(i) supply the four interface functions (according to the function prototypes given below)such that they can be called following the C calling conventions (thus, the functionsneed not be implemented in C as long as they obey the argument passing and returnvalue speci�cation);(ii) register these functions with the [incr tsdb()] side of the application program interface(i.e. make the entry points to the client-side functions known as function pointers)and notify the [incr tsdb()] server of the availability of the new client;(iii) go into client mode: call the slave() function (supplied in `itsdb.a') that blocksthe application until a task request is received, executes the requested task (i.e. callsback into the client using one of the interface functions), and relays the informationreturned to the [incr tsdb()] server.The slave() function runs in an in�nite loop and only returns to the client when theserver requests client termination (which is caused implicitly when the server becomes24To validate that these conditions for pvm startup are met, it may be helpful to verify that a commandlike `rsh perl.coli.uni-sb.de date' (substituting the name of an actual remote node, naturally) can becompleted successfully. For improved system security it may be desirable to designate a single (trusted)machine in the network as the host that is used to start pvm; then, other nodes in the virtual machineonly have to allow rsh(1) access to this one machine.25Please note that the [incr tsdb()] process becomes part of the virtual machine the �rst time the appli-cation program interface is used; thus, killing o� all pvm processes may terminate the [incr tsdb()] session,too. (Draft of October 15, 1999)



application program interface | 41unavailable) or an error in pvm communcation is encountered; the client should then ter-minate gracefully. Typically, a command-line option should be used to turn the processorinto [incr tsdb()] client mode (which will then be supplied by the [incr tsdb()] server inprocess creation) that, in turn, makes the client execute a code fragment like:'
&

$
%

#include "itsdb.h"[...]if(!capi_register(create_run,process_item,(int (*)(char *))NULL,complete_test_run)) {slave();} /* if */exit(0);The interface functions supplied by the client are instantiated as follows in the ANSIC application program interface:26� int create run(char *data, int run id, char *comment, int interactivep, char *custom);with parameters:27! data name of the test suite instance to be processed;! run id identi�er for this test run;! comment descriptive comment supplied by the user;! interactivep 
ag indicating whether the test run is to be processed in batchmode (regular [incr tsdb()] mode) or interactively (see below);! custom an application-speci�c string that was (optionally) supplied in theclient de�nition; when supplied, the client may take an appropriate action onthis parameter (e.g. (re)load a script �le or similar);since the interface functions need to return more information to [incr tsdb()] than justa simple function return value, while executing the client side of the interface (e.g.the create run() function) the standard output stream28 is redirected to the [incrtsdb()] server: the client is expected to write system parameters in a Lisp-like syntax(i.e. as bracketed pairs consisting of the parameter name and the corresponding26Since client functions are registered by entry point (i.e. as function pointers), names for the interfacefunctions can be assigned arbitrarily in the ANSI C application program interface. The function namesused in the startup example above and the prototypes below are just one candidate choice of a consistentnaming scheme.27The interface functions often have more parameters than would be strictly required to process therequested task; the additional information is supplied to the client to facilitate client-side accounting orthe display of status messages, where available. Obviously, these surplus parameters can be safely ignored.28To avoid misinterpretation of output generated by the client, it is essential that | while executinga function from the [incr tsdb()] application program interface | nothing except system parameters iswritten to standard output. Developers preparing a client for [incr tsdb()] adaptation should make surethat additional (e.g. status or debugging output) is printed to the standard error stream instead: thisstream is captured at the pvm layer, relayed to the server, and written to a protocol �le without furtherinterpretation. (Draft of October 15, 1999)



42 | [incr tsdb()] competence and performance laboratoryvalue) to this stream;29 following is an example of output generated by a recent lkbversion when run in [incr tsdb()] distributed mode: (:platform . "Allegro CL (5.0.beta [Linux/X86] (1/1/90 0:56))") (:application . "LKB (version `$Date: 1999/05/14 04:10:18 $')") (:grammar . "LinGO (may-99)") (:avms . 3144) (:sorts . 0) (:templates . 11) (:lexicon . 588) (:lrules . 27) (:rules . 36)� int process item(int i id, char *i input, int parse id, int edges,int exhaustivep, int derivationp, int interactivep);with parameters:! i id identi�er for this test item;! i input actual string for this item;! parse id identi�er for this process request;! edges upper limit for the number of edges (successful rule applications) to bebuilt by the parser (`-1' for no limit);! exhaustivep 
ag requesting exhaustive (complete) search: `1' by default; neg-ative numbers encode an upper limit on the number of analyses to computewhere `0' is interpreted equivalent to `-1';! derivationp 
ag asking the client to return not only the derivations for theanalyses that were found but to append the complete list of all passive edgesbuilt to the `:results' �eld (see section 5.3 and the example output below);! interactivep similar to `interactivep' parameter in create run(): [incr tsdb()]users can request interactive processing of individual items (e.g. by double-clicking on the i-input �eld in most analysis tables; see section 4); while pro-cessing in interactive mode the client should activate all available debuggingtools, like chart and result structure displays, for example;again, sample output produced by the lkb: (:others . 367136) (:symbols . 0) (:conses . 158480) (:first . 60) (:total . 60) (:treal . 93) (:tcpu . 90) (:tgc . 0) (:words . 5) (:l-stasks . 2) (:p-ftasks . 825) (:p-etasks . 55) (:p-stasks . 31) (:pedges . 14) (:rpedges . 4)29Though this mode of communication enables the client to relay processing results to the [incr tsdb()]server without much e�ort (i.e. using the regular printing routines available in all programming environ-ments), it is, at the same time, not especially robust: since the client output is forwarded to the [incrtsdb()] server without further veri�cation or format validation, failure to obey the surface format requiredin the interface can easily break the server-side of the interface (often, resulting in mysterious systemmalfunctioning). Therefore, it is expected to add an alternative mode of return parameter passing (usingstructured C objects) in the near future.(Draft of October 15, 1999)



application program interface | 43 (:readings . 1) (:results((:result-id . 0) (:time . 60)(:r-redges . 4) (:size . 147)(:derivation . "(\"root_cl\" 0 2(\"subjh\" 0 2(\"no-affix_infl_rule\" 0 1(\"abrams\" 0 1 (\"abrams\" 0 1)))(\"third_sg_fin_verb_infl_rule\" 1 2(\"work_v1\" 1 2 (\"work\" 1 2)))))"))) (:error . "")� int complete run(int run id, char *custom);with parameters:! run id name of the test suite instance to be processed;! custom similar to `custom' parameter in create run(): an optional piece ofsystem-speci�c information supplied in the client de�nition;as of June 1999, complete run() does not return any information to [incr tsdb()].6.4 Common-Lisp Clients6.5 Using [incr tsdb()] Distributed ModeAs of June 1999, there is no explicit support for [incr tsdb()] distributed mode in thegraphical user interface; although the regular test run functionally will transparently workon top of a set of client processors connected in distributed mode, the con�guration andcreation of client processes still has to be achived manually (i.e. on the Common-Lisp side).The discussion of user interaction with [incr tsdb()] will build on the following concepts:� cpu the term cpu is used to refer to the speci�cation of client processors: each cpuis usually described in terms of a host (node in the pvm virtual machine that isused to run the client), the command to start the client (i.e. a binary executed onthe remote machine), optional startup options, and one or more class identi�er(s)used to refer to individual cpus or cpu groups; [incr tsdb()] cpu descriptions caninclude additional information like the `custom' data passed to the client on testrun creation and completion (see above);� client a new [incr tsdb()] client (or client task) is created each time a cpu is acti-vated (or initialized); activating a cpu here means to request (from the pvm daemonresponsible for the node in question) that the command associated with the cpu beexecuted; after process creation the client itself is responsible for registration withthe [incr tsdb()] server (typically through execution of the `slave()' function pre-sented in sections 6.3 and 6.4 above) a client process on some node in the virtualmachine that the [incr tsdb()] can communicate with by virtue of the applicationprogram interface
(Draft of October 15, 1999)



44 | [incr tsdb()] competence and performance laboratory'

&

$

%

(setf *pvm-cpus*(list(make-cpu:host "let.dfki.uni-sb.de" :class '(:chic :chic@let):spawn "/project/cl/chic/bin/chic":options '("-tsdb"))(make-cpu:host "let.dfki.uni-sb.de" :class '(:chic :chic@let):spawn "/project/cl/chic/bin/chic":options '("-tsdb"))(make-cpu:host "limit.dfki.uni-sb.de" :class '(:chic :chic@limit):spawn "/project/cl/chic/bin/chic":options '("-tsdb"))(make-cpu:host "top.coli.uni-sb.de" :class '(:chic :chic@coli):spawn "/project/cl/chic/bin/chic":options '("-tsdb"))(make-cpu:host "top.coli.uni-sb.de" :class :lkb:spawn "/proj/perform/nacl/bin/acl":options '("-L" "/proj/perform/lkb/startup"):create "/proj/perform/lingo/jun-99/lkb/script")))Figure 12: Sample de�nition of [incr tsdb()] cpus (taken from a user `.tsdbrc' �le): theclass names chosen | at least in some cases | re
ect the client type as well as the nodeused to run the client.Usually, users will have a set of [incr tsdb()] cpus to choose from; when preparing fora test run, a selection from the set of available cpus is made to create clients as needed.The per-user con�guration �le `~/.tsdbrc' (see section 5.10) can be used to enumerate alist of cpus (similar to the pvm node listing in the `~/.pvm_hosts' �le).6.6 Debugging [incr tsdb()] Distributed Mode

(Draft of October 15, 1999)



appendix | iA Contents of the [incr tsdb()] Distribution

(Draft of October 15, 1999)



(Draft of October 15, 1999)



bibliography | iiiReferencesCarroll, John. 1994. Relating Complexity to Practical Performance in Parsing with Wide-CoverageUni�cation Grammars. In Proceedings of the 31st Meeting of the ACL, 287 { 294. Las Cruces,New Mexico.Copestake, Ann. 1992. The ACQUILEX LKB. Representation Issues in Semi-Automatic Acquisi-tion of Large Lexicons. In Proceedings of ANLP 1992, 88 { 96. Trento, Italy.Erbach, Karl Gregor. 1991. An Environment for Experimenting with Parsing Strategies. In Pro-ceedings of IJCAI 1991, ed. John Mylopoulos and Ray Reiter, 931 { 937. San Mateo, California.Morgan Kaufmann Publishers.Geist, Al, Adam Bequelin, Jack Dongarra, Weicheng Jiang Robert Manchek, and Vaidy Sunderam(ed.). 1994. PVM | Parallel Virtual Machine. A Users' Guide and Tutorial for NetworkedParallel Computing. Scienti�c and Engineering Computation. Cambridge, Massachusetts: TheMIT Press.Lehmann, Sabine, Stephan Oepen, Sylvie Regnier-Prost, Klaus Netter, Veronika Lux, Judith Klein,Kirsten Falkedal, Frederik Fouvry, Dominique Estival, Eva Dauphin, Herv�e Compagnion, Ju-dith Baur, Lorna Balkan, and Doug Arnold. 1996. tsnlp | Test Suites for Natural LanguageProcessing. In Proceedings of COLING 1996, 711 { 716. Kopenhagen, D�anemark.Oepen, Stephan, and Daniel P. Flickinger. 1998. Towards Systematic Grammar Pro�ling. TestSuite Technology Ten Years After. Journal of Computer Speech and Language 12 # 4 (SpecialIssue on Evaluation):411 { 436.Oepen, Stephan, Klaus Netter, and Judith Klein. 1997. tsnlp|Test Suites for Natural LanguageProcessing. In Linguistic Databases, ed. John Nerbonne. CSLI Lecture Notes. Center for theStudy of Language and Information.Ousterhout, John K. 1994. Tcl and the Tk Toolkit. Reading, MA: Addison-Wesley PublishingCompany.Uszkoreit, Hans, Rolf Backofen, Stephan Busemann, Abdel Kader Diagne, Elizabeth A. Hinkelman,Walter Kasper, Bernd Kiefer, Hans-Ulrich Krieger, Klaus Netter, G�unter Neumann, StephanOepen, and Stephen P. Spackman. 1994. DISCO | An HPSG-based NLP System and itsApplication for Appointment Scheduling. In Proceedings COLING 1994. Kyoto.

(Draft of October 15, 1999)


