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First shot: In defence of lost causes? Logic in

Computational Linguistics

The Machine Learning/Deep Learning revolution (well you are free
not to accept this term) in CL

Limitations of symbolic approaches (costly, they break easily)

◮ What is the role to be played by symbolic approaches in practical NLP
applications in the future?
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Logic and vector space semantics, logic and probability,

logic and ML/DL

Attempts to combine vector space semantics with logic exist (e.g.
work by Baroni et al., Sadrazdeh et al. etc)

◮ Some things seem to be incompatible, e.g. negation seems rather
difficult

Same with probabilistic logics (Erk, Cooper, Lappin et al.)

Not clear how logic and DL can fit together is some meaningful way

◮ Learning logical systems? (work by Socher et al. on using NNs to
capture logical inference, set inclusion relations etc. )

First conference on logic and machine learning at university of
Gothenburg

◮ Consider submitting! [Link]
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http://clasp.gu.se/news-events/conference-on-logic-and-machine-learning-in-natural-language--laml-


Natural Language Inference

What is Natural Language Inference

◮ Basically something like this: how much of human reasoning should a
CL system be able to capture

◮ FraCaS, PASCAL textual entailment and recently SNLI: all seem to
concentrate on aspects of what NLI is

⋆ Also, all of three seem to be designed, having (implicitly possibly) in
mind the standard line of research at that given period

◮ Gradience and inference
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Natural Language Inference

What counts as an NLI?

◮ Logical Entailment
⋆ The FraCaS test (Cooper et al. 1996) suite provides a collection of

mostly logical entailments. Categorization is done according to
semantic category

⋆ Three way classification of 346 inference problems: YES (the
conclusion follows), NO (the negation of the conclusion follows) and
UNK (none of the two follow)
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Natural Language Inference

(1) A Swede won the Nobel Prize.

Every Swede is Scandinavian.

Did a Scandinavian win the Nobel prize? [Yes, FraCas 049]
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Natural Language Inference

(3) A Swede won the Nobel Prize.

Every Swede is Scandinavian.

Did a Scandinavian win the Nobel prize? [Yes, FraCas 049]

(4) No delegate finished the report on time..

Did any Scandinavian delegate finish the report on time? [No,
FraCaS 070]
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Natural Language Inference

(5) A Scandinavian won the Nobel Prize.

Every Swede is Scandinavian.

Did a Swede win the Nobel prize? [UNK, FraCaS 065]
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Natural Language Inference

(9) A Scandinavian won the Nobel Prize.

Every Swede is Scandinavian.

Did a Swede win the Nobel prize? [UNK, FraCaS 065]

Other typical examples

(10) Either Smith, Jones or Anderson signed the contract. Did
John sign the contract? [UNK] (plurals, FraCaS 083)
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Natural Language Inference

(17) A Scandinavian won the Nobel Prize.

Every Swede is Scandinavian.
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Natural Language Inference

(21) A Scandinavian won the Nobel Prize.

Every Swede is Scandinavian.

Did a Swede win the Nobel prize? [UNK, FraCaS 065]
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The FraCaS: Brief evaluation

Unnatural data

◮ Highly skilled formal semanticists provided types of examples that an
NLI system should be able to capture
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The FraCaS: Brief evaluation

Unnatural data

◮ Highly skilled formal semanticists provided types of examples that an
NLI system should be able to capture

◮ Small dataset for today’s world

However the FraCaS is a useful resource since it contains targeted
examples according to the linguistic phenomena involved

◮ Involves cases of very fine-grained inference that the newer platforms
do not have (e.g. reasoning with elliptical fragments, aspectual
inference etc.)
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The RTE platforms

Platform appeared in 2005 (Dagan et al. 2006)
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Some RTE examples

P Budapest again became the focus of national political drama in the
late 1980s, when Hungary led the reform movement in eastern Europe
that broke the communist monopoly on political power and ushered in
the possibility of multiparty politics.

H In the late 1980s Budapest became the center of the reform
movement. [follows, RTE702]
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Some RTE examples

P Budapest again became the focus of national political drama in the
late 1980s, when Hungary led the reform movement in eastern Europe
that broke the communist monopoly on political power and ushered in
the possibility of multiparty politics.

H In the late 1980s Budapest became the center of the reform
movement. [follows, RTE702]

P Like the United States, U.N. officials are also dismayed that Aristide
killed a conference called by Prime Minister Robert Malval in
Port-au-Prince in hopes of bringing all the feuding parties together.

H U.N. officials take part in a conference called by Prime Minister
Robert Malval. (does not follow, RTE1933)
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The RTE platform: Brief evaluation

Natural examples
◮ However: Inclusion of controversial cases
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The RTE platform: Brief evaluation

Natural examples
◮ However: Inclusion of controversial cases

P Wal-Mart is being sued by a number of its female employees who
claim they were kept out of jobs in management because they were
women.

H Wal-Mart is sued for sexual discrimination.

Quite specialized and refined legal knowledge is needed for a system
to infer this
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The RTE platform: Brief evaluation

Complicated in terms of their syntax and semantics given the open
text nature but:

◮ Simple at the same time, given that in most of the cases no ”deep” (in
many quotes) reasoning is involved in the examples (at least the kind
discussed by formal semanticists)
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The RTE platform: Brief evaluation

This surface complexity is evident in the poor performance of all
systems evaluated on the RTE tasks
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The SNLI platform

Developed at Stanford (Bowman et al. 2015)
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The SNLI platform
Instructions used on Mechanical Turk
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The SNLI platform

Huge dataset
◮ Good for training NN models
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The SNLI platform

Again, it seems that this platform also misses parts of the whole
range of phenomena associated with NLI
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Simon Dobnik but I will say no more here
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Formal Models of Dialogue

Should dialogue data be part of the range of phenomena that
traditional models of syntax/semantics can capture?

◮ If yes, what kind of extensions to the models are needed?

⋆ Ellipsis as a syntactic (e.g. Merchant, Kobele), semantic or more
modular phenomenon (e.g. Ginzburg’s work)?

⋆ Dialogue data as a test case for formal linguistic frameworks?
⋆ Other approaches: Poesio and Rieser (incremetal LTAG plua a model of

dialogue coordination), Kempson et al. (Dynamic Syntax, Incremental
model, underspecification + update as central)

◮ Are these attempts of any practical relevance to dialogue systems?
◮ If yes, on what level?

⋆ A suggestion to this end: Oliver Lemon’s group at Herior Watt
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Formal Models of Dialogue

Dimitrios Kalatzis, Arash Eshghi, and Oliver Lemon. Bootstrapping
incremental dialogue systems: using linguistic knowledge to learn from
minimal data. NIPS workshop on Learning Methods for Dialogue 2016

◮ Reinforcement learning + an incremental model of syntax with a richly
typed semantic backbone (DS-TTR)

Yanchao Yu, Arash Eshghi, and Oliver Lemon. Incremental generation
of visually grounded language in situated dialogue. In Proceedings of
INLG 2016, Los Angeles, 2016.

◮ Interactive learning of grounded word meanings. DS-TTR + visual
classifiers
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Grammatical Framework + semantics

Ranta’s platform for multilingual translation

◮ Quite successful in multilingual translation
◮ One abstract syntax, linearizations in different concrete syntaxes
◮ Support for more than 20 languages
◮ Recent project: from GF to UD

But: no semantics!

Trying to provide dependent type semantics (within the Martin Löf
tradition)

Outputing this semantics to a dependently typed proof assistant
(Coq) to be reasoned about

Accuracy very high on the FraCaS (sections 1,2,4,5)

◮ In progress but a preliminary incomplete run shows accuracy above 90%

No idea where this will lead to!
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