
Technical Summary — Selection and Preprocessing

of the WeScience Corpus ∗

Gisle Ytrestøl

University of Oslo, Department of Informatics

gisley@ifi.uio.no

July 10, 2009

1 The WeScience Corpus

Considering the advances in research on syntactic and semantic analysis
that has been reached through linguistically annotated corpora, there exist
relatively few large-scale linguistic treebanks. More than anything, this can
be seen through the dominant role of Penn Treebank (PTB; Marcus et al.
(1993)) in data-driven natural language processing (NLP) for English. This
corpus consists primarily of Wall Street Journal articles from the late 1980s,
and both its subject matter, genre, design decisions and age can make the
use if this treebank undesirable for many tasks. Generally speaking, richly
annotated treebanks that exemplify a variety of domains and genres (and
of course languages other than English) are however not yet available. And
neither are broadly accepted gold-standard representations that adequately
support a range of distinct NLP tasks and techniques.

In response to a growing interest in so-called eScience applications of
NLP—computationally intensive, large-scale text processing to advance re-
search and education—a lot of current research targets scholarly literature,
often in molecular biology or chemistry (Tateisi et al. (2005); Rupp et al.
(2007); inter alios). Due to the specialized nature of these domains, how-
ever, many NLP research teams—without in-depth knowledge of the subject
area—report difficulties in actually “making sense” of their data. To make
eScience more practical (and affordable for smaller teams), we propose a
simple technique of compiling and annotating domain-specific corpora of

∗I would like to thank Stephan Oepen for his help and advises in the process of making
and preprocessing this corpus, and Dan Flickinger for his work on treebanking this corpus,
and for his productive comments and evaluation of the quality of the corpus. This techni-
cal summary quotes from Extracting and Annotating Wikipedia Sub-Domains, (Ytrestol,
Flickinger, and Oepen, 2009).

1



scholarly literature, initially drawing predominantly on encyclopedic texts
from the community resource Wikipedia.1

Adapting the Redwoods grammar-based annotation approach (Oepen
et al., 2004) to this task, we are constructing and distributing a new treebank
of texts in our own field, Computational Linguistics, annotated with both
syntactic and (propositional) semantic information—dubbed the WeScience
Treebank. Should this approach prove feasible and sufficiently cost-effective,
we expect that it can be adapted to additional document collections and
genres, ideally giving rise—over time—to an increased repository of “com-
munity treebanks”, as well as greater flexibility in terms of gold-standard
representations.

1.1 Initial Preparations

All articles in the WeScience Corpus are taken from a Wikipedia snapshot
released July 2008, and can be downloaded at http://www.delph-in.net/
wescience/enwiki-20080727-pages-articles.xml.bz2. More recent dumps
are available at http://download.wikimedia.org/enwiki/.

From this collection, I set up an offline Wikipedia reader on a local
computer. As Wikipedia articles are continuously changing, it was impor-
tant to have this collection offline in order to have a data set that does
not change overnight. The offline reader allows the user to browse and
search for Wikipedia articles from one specific Wikipedia collection on a lo-
cal web server. A simple introduction on how to build an offline Wikipedia
reader can be found on http://users.softlab.ece.ntua.gr/~ttsiod/

buildWikipediaOffline.html. Alternatively, one can use MediaWiki2.
The scripts I have used would however need to be rewritten in order to
work with MediaWiki.

2 The Software and Scripts used by WeScience

The following scripts and software tools are used by WeScience (sorted by
the order in which they are used):

• linkextractor.py

• makecorpus.py

• ccp.py

• tokenizer — http://www.cis.uni-muenchen.de/~wastl/misc/

1In 2007 and 2008, the interest in Wikipedia content for NLP research has seen a lively
increase; see http://www.mkbergman.com/?p=417 for an overview of recent Wikipedia-
based R&D, most from a Semantic Web point of view.

2http://www.mediawiki.org/wiki/MediaWiki

2



• cccp.py

The Python scripts are available through SVN, \$LOGONROOT/uio/wescience/
bin in the LOGON repository. They are however not made for large-scale
extraction and corpus preparation, and the user may experience that they
are inefficient if they are used with a significantly larger number of articles
than what is used by WeScience.

3 Domain-Specific Selection of Text

Our goal for the WeScience Corpus is to extract a sub-domain corpus, tar-
geting our own research field—NLP. To approximate the notion of a spe-
cific sub-domain in Wikipedia (or potentially other hyper-linked electronic
texts), we start from the Wikipedia category system—an optional facility
to associate articles with one or more labels drawn from a hierarchy of
(user-supplied) categories. The category system, however, is immature and
appears far less carefully maintained than the articles proper. Hence, by
itself, it would yield a relatively poor demarcation of a specific subject area.
For our purposes, we chose the category Computational Linguistics and all
its sub-categories—which include, among others, Natural Language Process-
ing, Data Mining and Machine Translation—to activate an initial seed of
potentially relevant articles. Altogether, 355 articles are categorized under
Computational Linguistics or any of its sub-categories. These seed articles
can be inspected in Appendix B.1, and is found in the LOGON reposi-
tory (\$LOGONROOT/uio/wescience/etc). However, some of these articles
seemed somewhat out-of-domain (see Section 3.1 for examples), and several
are so-called stub articles or very specific and short, e.g. articles about in-
dividual software tools or companies. To compensate for this, we applied a
simple link analysis using the script linkextractor.py, as described below.

3.1 Link Extractor

It is apparent that many relevant articles are not (yet) associated with either
Computational Linguistics or any of its sub-categories. To compensate for
the limitations in the Wikipedia category system, we applied a simple link
analysis and counted the number of cross-references to other Wikipedia ar-
ticles from our initial seed set. By filtering out articles with a comparatively
low number of cross-references, we aim to quantify the significance (of all
candidate articles) to our domain, expecting to improve both the recall and
precision of sub-domain extraction.

Among the articles that were filtered out from our original set of seed
articles, we find examples like AOLbyPhone (1 reference) and Computa-
tional Humor (2 reference). New articles, differently categorized, were ac-
tivated based on this approach. These include quite prominent examples

3



like Machine learning (35 references), Artificial intelligence (34 references)
and Linguistics (25 references). Of the 355 seed articles, only 30 articles
remain in the final selection. Confirming our expectations, filtering based
on link analysis eliminated the majority of very narrowly construed articles,
e.g. specific tools and enterprises.

However, our link analysis and cross-reference metric also activates a
few dubious articles (in terms of the target sub-domain), for example United
States (9 references). We have deliberately set up our sub-domain extraction
approach as a fully automated procedure so far, avoiding any elements of
subjective judgment.3

The file containing the seed articles was used as input by the Python
script linkextractor.py. The script extracts the links in the Wikipedia
articles and sorts them by frequency. Links containing “:” or “#” are
removed, as these links refer to external sources or sub-sections within a
Wikipedia article. Figure 1 shows a snippet of the frequency count, after all
the links have been extracted from the articles.

(...)

cleanLink= {}

for link in allLinks:

if not ’:’ in link:

if not ’#’ in link:

if link in cleanLink:

cleanLink[link] = cleanLink[link] + 1

else:

cleanLink[link] = 1

sortedDict = sorted(cleanLink.iteritems(),

key=lambda (k,v):(v,k), reverse=True)

for link in sortedDict:

print link

Figure 1: The algorithm for counting and sorting all the
links from all the articles, when all the links are stored in
the list allLinks .

It should however be noted that the desired consistency is not always kept
when various articles are being referred to. Thus, we find references to

3Except for the removal of the articles “2005” and “2006”, which primarily contain
lists of occurrences and deaths that took place that year, and not running text.

4



(“/article/Part of speech/”, 8), as well as (“/article/Parts-of-speech/”, 2) –
both of these links will lead to a redirect page to the article Lexical Cat-
egory. Although it is to some extent possible to compensate for some of
these inconsistencies, for practical reasons we decided on using this initial
link analysis. Please see Appendix C for a more extensive discussion on this
matter.
Usage:
python linkextractor.py seedArticleLinks.txt >

linksSortedByFreq.txt

linkextractor.py takes a list of links to Wikipedia articles as parame-
ter, and prints the number of links (e.g. Wikipedia articles) in the articles
as standard output, sorted by frequency. For the WeScience Corpus, we
used all articles that had eight cross-references or more, see Appendix B.2,
112 links in total.

3.2 Article Extraction

The Python script makecorpus.py takes a list of Wikipedia links as param-
eter, and will try to store these articles to the local disk. The script will only
work with the Wikipedia offline reader described in Section 2. The paths to
the Wikipedia source file, as well as the path to where the articles will be
stored, are hard coded into the script, and may be changed in an alternative
configuration. By default, a copy of the Wikipedia source article will be
stored to /var/tmp/result when a given Wikipedia article is opened in the
offline reader. This file will be copied to the path provided in newfilepath

in the function copyCorpus in the script.
The script detects if the pages visited contains a redirect link, and will fol-

low the redirect link no more than five time—if it does not reach a Wikipedia
article by then, it will move on to the next link. To suppress the linguis-
tically less rewarding stub articles, we further applied a minimum length
threshold (of 2,000 characters, including markup) and were left with 100
Wikipedia articles and approximately 270,000 tokens.

Usage: python makecorpus.py articlelinks

The articles will be stored with a three digit identifier prefix, followed by
the name of the article and the suffix source, the result for the WeScience
Corpus can be inspected in Appendix B.3.

4 Wikipedia Markup

Wikipedia articles are edited in Wiki Markup Syntax, a straightforward logi-
cal markup language that facilitates on-line rendering (as HTML) for display

5



in a web browser. Again, there are Wikipedia guidelines and conventions
for how to edit or add content, aiming to keep the architecture and de-
sign as consistent as possible. In preparing the WeScience Corpus we aim
to strike a practical balance between (a) preserving all linguistic content,
including potentially relevant markup, and (b) presenting the corpus in a
form that is easily accessible to both humans and NLP tools. From the raw
source files of Wikipedia articles, we eliminate markup which is linguistically
irrelevant—some meta information or in-text image data, for example—but
aim to preserve all markup that may eventually be important for linguis-
tic analysis. Markup indicating bulleted lists, (sub)headings, hyper-links,
or specific font properties, for example, may signal specialized syntax or
use –mention contrasts.

Example (1) and (2) are two examples of Wikipedia markup that we
want to preserve, because it closely interacts with “core” linguistic content:

(1) [10120240] |* Design of [[parser]]s or [[phrase chunking—chunkers]]
for [[natural language]]s

(2) [10621290] |For example, in the following example, ”one”
can stand in for ”new car”.

The WeScience Corpus provides gold-standard “sentence” boundaries (some-
times sentential units are not sentences in the linguistic sense) with unique
sentence identifiers. Examples (1) and (2) show the actual WeScience file
format, where each sentence is prefixed by its identifier and the “|” separa-
tor symbol. In (1), the initial * indicates items in a bulleted list (which can
exhibit various specialized syntactic patterns) and the square brackets show
Wikipedia hyper-links. Example (2) on the other hand, shows the use of
italics (the interpretation of the double apostrophe in Wikipedia markup)
for the purpose of quoting; i.e. the use citation–mention distinction is made
as a font property only. Section 4.2 will give an in-depth discussion on the
tools used in this pre-processing stage.

4.1 Wikipedia Templates

In order to maintain consistency within Wikipedia articles, a number of
templates are used to display content that should be identical throughout
(English) Wikipedia. In Wiki Markup Syntax, templates appear within
curly brackets.

There are two ways of using templates in Wikipedia: transclusion and
substitution.

The former will include the content of {{Template Name}} on
the fly whenever the article is loaded, while the latter will per-
manently insert the content of the template into the article.
With substitution, even if the template content is modified at

6



a later date, the article’s content will not change. The com-
mon method for using template messages is transclusion, imple-
mented by usage of a tag with the form {{template name}}, in
whatever article or talk page one wants the template code/text
to be shown. (http://en.wikipedia.org/wiki/MediaWiki_
custom_messages)

For transclusion, a text box is typically inserted in the article. E.g. the
template {{Disputeabout|”’The topic of dispute”’}} within the article will
insert the text box in Figure 2 on top of the article.

Figure 2: The text box inserted by the Disputeabout template.

Adding subst: in front of the template will permanently replace the
template with the text of the template, and this is not an issue we have to
deal with in the WeScience Corpus.

A small proportion of the templates contains content that will appear
within the running text in the Wikipedia articles. E.g. the template Fact
will be rendered [citation needed] in the browser. As the templates are defined
globally, they are stored in a database, and retrieved each time a Wikipedia
page is read. By default, templates are removed from the WeScience Corpus,
as they contribute little to the linguistic content of the sentence.

However, we have a few custom-made rules for some of the more frequent
templates that are important for the sentences they occur in. An example on
this is the template IPA, that makes sure the IPA transcription is correctly
rendered by the browser. The IPA template

(3) {{IPA|/’kær@kt9z/}}

will be converted to the following HTML code in Wikipedia:

(4) <span title="Representation in the International Phonetic

Alphabet (IPA)" class="IPA">/’kær@kt9z/</span>4

In WeScience, the IPA templates are preserved when they occur in running
text, as in example (5).

(5) [10421470] —E.g.: ”buono” {{IPA|[’bwOno]}}, ”ieri” {{IPA|[’jEri]}}.

4http://en.wikipedia.org/wiki/Template:IPA

7



Another example is the {{lang}} template, used for indicating that a given
span of text belongs to a particular language.

(6) [10302260] |: ”{{lang|de|Der alte Mann gibt mir das Buch heute.}}”

The use of templates are quite inconsistent in many articles, and proba-
bly dependent on the person editing the text (as one is free to introduce own
templates). The result of this seems to be that the use of templates vary
according to the author of the article/section in Wikipedia. E.g. within the
Japanese Language article there is no consistency as to whether passages
and words in Japanese are written with the {{Nihongo}} template5, the
{{lang|jap}} template, or no template at all.

4.2 Markup Removal

Unwanted markup and entire sections from the source articles have been au-
tomatically removed, mainly by the use of regular expressions in the Corpus
Clean pipeline (see Section 4.2.1). Removed parts of the articles are, as
we see it, irrelevant to linguistic analysis, including entire sections—like See
Also, References, or Bibliography—or links to images, comments made by
other users, templates (as described in Section 4.1) and various Wikipedia-
internal elements.

Once reduced to what we consider (potentially) relevant linguistic con-
tent, we applied semi-automated sentence segmentation. In a first, auto-
mated step, all linebreaks were removed from the original source text, and
the open-source package tokenizer was used to insert sentence boundaries.
This is a rule-based tool which proved very capable as a sentence segmenter.
The procedure was further optimized by some customization, based on a
manual error analysis. Most of the errors made by the segmenter could be
attributed to “misleading” (remaining) markup in its input (tokenizer, by
default, expects “pure” text). For instance, the tool initially failed to in-
sert segment boundaries between some numbered list elements (where the
Wikipedia markup “#”, in a sense, takes on the function of sentence-initial
punctuation). To improve the quality of the sentence segmentation, we
would either

(7) a. improve the cleansing of the Wiki Source Markup, so that tokenizer
would process as “normal” text as possible, or

b. force segment boundaries in cases where tokenizer was known
to fail.

Cases as in (7-a) are discussed in Section 4.2.1, and cases similar to (7-b)
are discussed in Section 4.3.

5Nihongo means Japanese.

8



A second round of error analysis on a sub-set of 1,000 segments suggests
a residual error rate of about 4 per cent, with half of these text preparation
errors due to incomplete handling of wiki mark-up (e.g. for <math> and
<code> blocks, colons marking indentation, and some hyperlinks). The other
half of these errors are due to missing or spurious sentence breaks (often
due to unusual punctuation clusters), and to confusion of picture captions
or section headers with main text. The remaining errors after the pre-
processing stage will corrected manually in the treebanking process.

4.2.1 Corpus Clean

Wiki Markup Syntax =⇒ ccp.py =⇒ tokenizer =⇒ cccp.py =⇒ WeScience Format

Figure 3: Corpus Clean pipeline

The articles are cleansed using the pipeline Corpus Clean, where tokenizer
is executed on the output of the Python script ccp.py, and tokenizer’s
output serves as input for cccp.py. The pipeline should remove undesirable
parts from the source text, insert sentence segments and equip each sentence
with a unique identifier. The cleansing process is mostly based on a number
of regular expressions. These Python scripts remove amongst others content
in curly brackets, images, galleries and HTML code, and entire sections like
See also, References, Bibliography etc. Figure 4 and 5 show an example of
only a few of the regular expressions that were used to strip the articles for
unwanted content, markup and metadata.

Note that the regular expressions regrelated and regexternal remove
the rest of the entire article. When either of these two sections appear in a
Wikipedia article that follows the conventions, we know that the rest of the
article should contain mainly lists, references and other elements which will
not serve as good input sentences for our parser and it is therefore removed.
However, there are some articles where the Wikipedia conventions are not
followed, and a section name is used multiple times. The script therefore
uses so-called look-aheads to make sure, given that a section name appears
multiple times, only the last section in the article is removed.

The regular expressions regcurley1 and reggallery will match any-
thing that appears inside either curly brackets or <gallery>. . . </gallery>,
and remove the entire content within these.

To convert the cleansed output to a one-sentence-per-line structure, all
linebreaks were removed from the original source text. We then ran the
sentence boundary detector tokenizer, and used this to format the text
according to the desired structure. After these stages, each separate article
is written to a new file without any manual editing.

9



regcurly1 = re.compile(r’(\({{[^}^{]*?}}\)|

\’*{{[^}^{]*?}}\’*)’,re.MULTILINE | re.DOTALL)

regwikitable1 = re.compile(r’{[^}]*?class="?wikitable"?[^}]*?}’,

re.MULTILINE | re.DOTALL)

regwikitable2 = re.compile(r’[^{]{\|[^\\][^}^{]*?}’,

re.MULTILINE | re.DOTALL)

reggallery = re.compile(r’<gallery.*?</gallery\s?>’,

re.MULTILINE | re.DOTALL)

regsourcelookahead = re.compile(r’==+\s?

(?=Sources.*?==+\s?Sources)’, re.MULTILINE | re.DOTALL)

regsourcelookaheadrestore = re.compile(r’___(Sources)(.*?==+)’,

re.MULTILINE | re.DOTALL)

regrelated = re.compile(r’==+\s?Related web sites\s?.*’,

re.MULTILINE | re.DOTALL)

regexternal = re.compile(r’==+\s?External links\s?.*’,

re.MULTILINE | re.DOTALL)

Figure 4: Regular expressions from the pipeline Corpus Clean used to re-
move unwanted content from the Wikipedia articles.

4.3 Sentence Segmentation

We tested a few different sentence boundary (SB) detectors before deciding
which to use. A natural choice would have been to use the NTLK (Natural
Language Toolkit6) open source Python modules which includes a SB detec-
tor. We did however not find its performance sufficiently good, and decided
to use tokenizer instead. This SB detector is used in a pipeline between
stage one and stage two of the Python scripts that remove and convert the
articles from Wiki Markup Syntax to the desired format.

Since tokenizer is designed to be used on normal text, its performance
suffered due to the frequent use of markup and non-standard formatting in
the article. To compensate for this, we made additional regular expression
to be used where tokenizer was likely to fail. In example (1) and (2),
End of Line XML codes are inserted between elements in bulleted list, as
sentences in these list often lack a full stop at the end of the sentence. The
<EOS /> tags are later converted to line breaks.

Alternatively, there are markup elements that should never span segment
boundaries (e.g. Wikipedia links, <source> and <code> blocks). In the pre-
processing, End-Of-Sentence-Tags inserted by tokenizer are removed after
the segmentizer stage using temporarily placeholders and regular expression,
see Figure 7.

6http://nltk.org

10



def regCleanFile(self,input):

input = regex.regcurly1.sub(’’,input)

input = regex.regwikitable1.sub(’’,input)

input = regex.regwikitable2.sub(’’,input)

input = regex.reggallery.sub(’’,input)

(...)

return input

def removeEnd(self,input):

input = regex.regsourcelookahead.sub(r’___’,input)

input = regex.regsourcelookahead.sub(r’___’,input)

(...)

input = regex.regsources.sub(’’,input)

input = regex.regsourcelookaheadrestore.sub(r’\2\1\2’,input)

(...)

input = regex.regrelated.sub(’’,input)

input = regex.regexternal.sub(’’,input)

(...)

return input

Figure 5: Removal of unwanted markup and content from
Wikipedia articles.

4.3.1 Usage

The scripts are used in a pipeline with tokenizer. ccp.py takes the source
folder as input parameter (-i), and writes the entire corpus to one single
file. The option -n means “no redirect processing”, and should be used if the
articles have been extracted by the script makecorpus.py, since this script
makes sure none of the links lead to a redirect page. tokenizer should be
invoked as indicated in Figure 8. The last script in the pipeline, cccp.py,
takes the output from tokenizer as input, and writes the output to a folder
specified by the user. The optional parameter -l specifies the maximum
number of lines in each output WeScience files (“sections” of a sort), for the
WeScience Treebank each section comprises up to 1,000 sentence, and no
article is split between two files. If no maximum number of lines is specified,
the entire corpus will be dumped to one single file. Figure 8 demonstrates
the pipeline in use, and can be run as a shell script.

11



From regex.py:

regbullets = re.compile(r’(^[#*].*?)\n’, re.MULTILINE |

re.DOTALL)

regindentcolon = re.compile(r’(^[;:][:;]?.*?)\n’,

re.MULTILINE | re.DOTALL)

regbullets2 = re.compile(r’(^\*.*?)\n’, re.MULTILINE |

re.DOTALL)

From regCleanFile(self,input) in ccp.py:

input = regex.regbullets.sub(r’<EOS />\1<EOS />’, input)

input = regex.regbullets2.sub(r’<EOS />\1<EOS />’, input)

input = regex.regindentcolon.sub(r’<EOS />\1<EOS />’, input)

Figure 6: Insertion of End-of-Sentence Tags in lists.

4.4 The WeScience Format

In the tradition of the Un*x operating system, we have opted for a textual,
line-oriented exchange format for the WeScience Corpus. The central unit
of analysis in our setup is the sentence, so it is convenient to structure the
corpus around this. Each sentence starts with an identifier—this is a eight-
number digit that always starts with 1. The next three number specify the
article number it is derived from, and the second three refer to the line
number. The last number is initially 0, this final slot is reserved for any
later corrections and changes on the original line.

Sentence number 49 in article 65 has thus the following identifier:

Placeholder Article Number Sentence number Decimal

1 065 049 0

Table 1: Identifier for sentence (8).

(8) [10650490] |These rules can be formally expressed with [[attribute
grammar]]s.

This line-oriented format follows the traditions of the Redwood corpus (Oepen
et al., 2004).

12



From regex.py:

regremoveeosincode = re.compile

(r’(<code[^<]*?)<EOS />(.*<EOS />)*?(.*?</code>)’,

re.MULTILINE | re.DOTALL)

From cccp.py:

def removeEosInCode(self,input):

while regex.regremoveeosincode2.search(input):

hit = regex.regremoveeosincode2.search(input)

span = hit.span()

removedeos = regex.regeos.sub(r’’,input[span[0]:span[1]])

removedeos = removedeos.replace("<code","<___code")

removedeos = removedeos.replace("</code","</___code")

input = input[:span[0]]+removedeos+input[span[1]:]

return input

def processFileAfterToken(self,input):

(...)

input = self.removeEosInCode(input)

(...)

input = input.replace("<___","<")

input = input.replace("</___","</")

(...)

return input

Figure 7: Removal of End-of-Sentence Tags in code ele-
ments.

5 Further Work

In the hope that our WeScience efforts may stimulate adaptation by others,
we have released a first version in early 2009. This initial release of the
corpus and partial treebank is available on the WeScience home page: http:
//www.delph-in.net/wescience/. By June 30th, eight sections (of 16)
are treebanked and can be downloaded, this number will increase in near
future. This version will minimally provide a stable selection of in-domain
articles and gold-standard sentence segmentation. In joint work with the
LinGO developers, we expect to adapt both the grammar (extend or improve
linguistic analyses) and parsing technology in the light of the WeScience

13



tmp1=/tmp/.wescience.${USER}.$$.1

tmp2=/tmp/.wescience.${USER}.$$.2

cd ${LOGONROOT}/uio/wescience/bin;

Python ccp.py -i ${LOGONROOT}/uio/wescience/raw/ -o ${tmp1} -n;

${LOGONROOT}/cis/bin/linux.x86.32/tokenizer -L en-u8 -S ${tmp1} > ${tmp2};

Python cccp.py -i ${tmp2} -l 1000 -o ${LOGONROOT}/uio/wescience/txt;

/bin/rm -f ${tmp1} ${tmp2} > /dev/null;

Figure 8: The Corpus Clean pipeline in use.

experience.

References

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Build-
ing a large annotated corpus of English. The Penn Treebank. Computa-
tional Linguistics, 19:313 – 330, 1993.

Stephan Oepen, Daniel Flickinger, Kristina Toutanova, and Christopher D.
Manning. LinGO Redwoods. A rich and dynamic treebank for HPSG.
Journal of Research on Language and Computation, 2(4):575 – 596, 2004.

CJ Rupp, Ann Copestake, Simone Teufel, and Ben Waldron. Flexible inter-
faces in the application of language technology to an eScience corpus. In
Proceedings of the UK eScience Programme All Hands Meeting, Notting-
ham, UK, 2007.

Yuka Tateisi, Akane Yakushiji, Tomoko Ohta, and J. Tsujii. Syntax annota-
tion for the GENIA corpus. In Proceedings of the 2nd International Joint
Conference on Natural Language Processing, pages 222 – 227, Jeju, Korea,
2005.

Gisle Ytrestol, Dan Flickinger, and Stephan Oepen. Extracting and An-
notating Wikipedia Sub-Domains — Towards a New eScience Commu-
nity Resource. In Proceedings of The Seventh International Workshop on
Treebanks and Linguistic Theories (TLT 7 2009), Groningen, The Nether-
lands, 2009.

14



A List of Articles

A.1 The Articles in the WeScience Corpus

001.Algorithm
002.Ambiguity
003.Artificial intelligence
004.Artificial Linguistic Internet Computer Entity
005.Artificial neural network
006.Association for Computational Linguistics
007.Babel Fish (website)
008.Bioinformatics
009.BLEU
010.Business intelligence
011.Chatterbot
012.Computational linguistics
013.Computer program
014.Computer science
015.Corpus linguistics
016.Cross-platform
017.Data
018.Data analysis
019.Database
020.Cluster analysis
021.Data mining
022.Data set
023.ELIZA
024.English language
025.Esperanto
026.Formal grammar
027.Free software
028.Freeware
029.French language
030.German language
031.GNU General Public License
032.Google
033.Google Translate
034.Grammar
035.Hidden Markov model
036.HTML
037.IBM
038.Information
039.Information extraction
040.Information retrieval

15



041.Information theory
042.Italian language
043.Japanese language
044.Java (programming language)
045.Language
046.Language model
047.Latent semantic analysis
048.Linguistics
049.Linux
050.List of chatterbots
051.Loebner prize
052.Machine learning
053.Machine translation
054.Metadata
055.Microsoft Windows
056.Morphology (linguistics)
057.Named entity recognition
058.Natural language
059.Natural language processing
060.Neural network
061.N-gram
062.Noun
063.Ontology (information science)
064.OpenOffice.org
065.Parsing
066.Lexical category
067.Part-of-speech tagging
068.Pattern recognition
069.Phrase
070.Portuguese language
071.Predictive analytics
072.RapidMiner
073.Russian language
074.Web search engine
075.Semantics
076.Sentence (linguistics)
077.Computer software
078.Spanish language
079.Speech recognition
080.Speech synthesis
081.Statistical classification
082.Statistical machine translation
083.Statistics
084.Syntax

16



085.SYSTRAN
086.Text analytics
087.Text corpus
088.Text mining
089.Translation
090.Translation memory
091.Turing test
092.United States
093.Verb
094.Web application
095.Word
096.WordNet
097.WordPerfect
098.Word sense disambiguation
099.XHTML
100.XML

17



B Article Selection

B.1 Seed Articles

The 355 articles from Computational Linguistics or any of the subcategories:

http://127.0.0.1:8000/article/Able%20Danger

http://127.0.0.1:8000/article/Accuracy%20paradox

http://127.0.0.1:8000/article/Acoustic%20Model

http://127.0.0.1:8000/article/Additive%20smoothing

http://127.0.0.1:8000/article/Affinity%20analysis

http://127.0.0.1:8000/article/AFNLP

http://127.0.0.1:8000/article/Albert%20One

http://127.0.0.1:8000/article/Alicebot

http://127.0.0.1:8000/article/ALPAC

http://127.0.0.1:8000/article/Amarna%20letters

http://127.0.0.1:8000/article/American%20National%20Corpus

http://127.0.0.1:8000/article/Analogical%20modeling

http://127.0.0.1:8000/article/Anomaly%20detection

http://127.0.0.1:8000/article/Ants%20sleeping%20model

http://127.0.0.1:8000/article/AOLbyPhone

http://127.0.0.1:8000/article/Apatar

http://127.0.0.1:8000/article/Apertium

http://127.0.0.1:8000/article/Apriori%20algorithm

http://127.0.0.1:8000/article/Articulatory%20phonology

http://127.0.0.1:8000/article/Artificial%20grammar%20learning

http://127.0.0.1:8000/article/Artificial%20Linguistic%20Internet%

20Computer%20Entity

http://127.0.0.1:8000/article/Asia%20Online

http://127.0.0.1:8000/article/Association%20for%20Computational%

20Linguistics

http://127.0.0.1:8000/article/Association%20rule%20learning

http://127.0.0.1:8000/article/Audio%20mining

http://127.0.0.1:8000/article/Audio-visual%20speech%20recognition

http://127.0.0.1:8000/article/Augmented%20transition%20network

http://127.0.0.1:8000/article/Automated%20Lip%20Reading

http://127.0.0.1:8000/article/Automated%20Targeting%20System

http://127.0.0.1:8000/article/Automatic%20distillation%20of%20structure

http://127.0.0.1:8000/article/Automatic%20summarization

http://127.0.0.1:8000/article/Babel%20Fish%20(website)

http://127.0.0.1:8000/article/Babylon%20(program)

http://127.0.0.1:8000/article/Bag%20of%20words%20model

http://127.0.0.1:8000/article/Bank%20of%20English

http://127.0.0.1:8000/article/BaseN

18



http://127.0.0.1:8000/article/Benford\’s%20law

http://127.0.0.1:8000/article/Biclustering

http://127.0.0.1:8000/article/Bigram

http://127.0.0.1:8000/article/Bijankhan%20Corpus

http://127.0.0.1:8000/article/Biomedical%20text%20mining

http://127.0.0.1:8000/article/Bitext%20word%20alignment

http://127.0.0.1:8000/article/BLEU

http://127.0.0.1:8000/article/BowLingual

http://127.0.0.1:8000/article/Bradford\’s%20law

http://127.0.0.1:8000/article/Brill%20tagger

http://127.0.0.1:8000/article/British%20National%20Corpus

http://127.0.0.1:8000/article/Brown%20Corpus

http://127.0.0.1:8000/article/Business%20analytics

http://127.0.0.1:8000/article/Calais%20(Reuters%20Product)

http://127.0.0.1:8000/article/Center%20embedding

http://127.0.0.1:8000/article/Chart%20parser

http://127.0.0.1:8000/article/ChaSen

http://127.0.0.1:8000/article/CHAT%20and%20TIPS

http://127.0.0.1:8000/article/Chatterbot

http://127.0.0.1:8000/article/Chinese%20speech%20synthesis

http://127.0.0.1:8000/article/Chris%20Westphal

http://127.0.0.1:8000/article/ClearForest

http://127.0.0.1:8000/article/Cluster%20analysis

http://127.0.0.1:8000/article/CMU%20Pronouncing%20Dictionary

http://127.0.0.1:8000/article/Coh-Metrix

http://127.0.0.1:8000/article/Collocation

http://127.0.0.1:8000/article/Companions%20Project

http://127.0.0.1:8000/article/Comparison%20of%20machine%20translation%

20applications

http://127.0.0.1:8000/article/Computational%20humor

http://127.0.0.1:8000/article/Computational%20lexicology

http://127.0.0.1:8000/article/Computational%20linguistics

http://127.0.0.1:8000/article/Computational%20Linguistics%20(journal)

http://127.0.0.1:8000/article/Computational%20semantics

http://127.0.0.1:8000/article/Computer-assisted%20translation

http://127.0.0.1:8000/article/Concept%20drift

http://127.0.0.1:8000/article/Concept%20mining

http://127.0.0.1:8000/article/Concordancer

http://127.0.0.1:8000/article/Controlled%20natural%20language

http://127.0.0.1:8000/article/Conversational%20agent

http://127.0.0.1:8000/article/Co-occurrence%20networks

http://127.0.0.1:8000/article/Corpora%20(journal)

http://127.0.0.1:8000/article/Corpus%20linguistics

http://127.0.0.1:8000/article/Corpus%20Linguistics%20and%20Linguistic%

19



20Theory%20(journal)

http://127.0.0.1:8000/article/Corpus%20of%20Contemporary%20American%

20English

http://127.0.0.1:8000/article/Croatian%20National%20Corpus

http://127.0.0.1:8000/article/Cross%20Industry%20Standard%20Process%

20for%20Data%20Mining

http://127.0.0.1:8000/article/Cross-language%20information%20retrieval

http://127.0.0.1:8000/article/CrushConnect

http://127.0.0.1:8000/article/CSL%20(speech%20analysis)

http://127.0.0.1:8000/article/Cypher%20transcoder

http://127.0.0.1:8000/article/Data%20dredging

http://127.0.0.1:8000/article/Data%20fusion

http://127.0.0.1:8000/article/Data%20mining

http://127.0.0.1:8000/article/Data%20mining%20agent

http://127.0.0.1:8000/article/Data-snooping%20bias

http://127.0.0.1:8000/article/Data%20stream%20mining

http://127.0.0.1:8000/article/Data%20visualization

http://127.0.0.1:8000/article/Decision%20tree%20learning

http://127.0.0.1:8000/article/Deep%20Web%20Technologies

http://127.0.0.1:8000/article/DialogOS

http://127.0.0.1:8000/article/Dictionary-based%20machine%20translation

http://127.0.0.1:8000/article/Distributed%20Language%20Translation

http://127.0.0.1:8000/article/Distributional%20hypothesis

http://127.0.0.1:8000/article/Document%20classification

http://127.0.0.1:8000/article/Document-term%20matrix

http://127.0.0.1:8000/article/Dr.%20Sbaitso

http://127.0.0.1:8000/article/Dynamic%20itemset%20counting

http://127.0.0.1:8000/article/Early%20stopping

http://127.0.0.1:8000/article/Ebla%20tablets

http://127.0.0.1:8000/article/Elbot

http://127.0.0.1:8000/article/ELIZA

http://127.0.0.1:8000/article/Espionage

http://127.0.0.1:8000/article/ETBLAST

http://127.0.0.1:8000/article/Eurotra

http://127.0.0.1:8000/article/EuroWordNet

http://127.0.0.1:8000/article/Evaluation%20of%20machine%20translation

http://127.0.0.1:8000/article/Example-based%20machine%20translation

http://127.0.0.1:8000/article/EXtended%20WordNet

http://127.0.0.1:8000/article/Factored%20language%20model

http://127.0.0.1:8000/article/FatiGO

http://127.0.0.1:8000/article/FLAME%20clustering

http://127.0.0.1:8000/article/Foreign%20language%20reading%20aid

http://127.0.0.1:8000/article/Foreign%20language%20writing%20aid

http://127.0.0.1:8000/article/Formal%20concept%20analysis

20



http://127.0.0.1:8000/article/FrameNet

http://127.0.0.1:8000/article/Fred%20Chatterbot

http://127.0.0.1:8000/article/Frederick%20Jelinek

http://127.0.0.1:8000/article/Frequency%20list

http://127.0.0.1:8000/article/GEMET

http://127.0.0.1:8000/article/General%20Architecture%20for%20Text%

20Engineering

http://127.0.0.1:8000/article/GeneRIF

http://127.0.0.1:8000/article/Genetic%20fuzzy%20systems

http://127.0.0.1:8000/article/Georgetown-IBM%20experiment

http://127.0.0.1:8000/article/Google%20Translate

http://127.0.0.1:8000/article/Grammar%20induction

http://127.0.0.1:8000/article/GramTrans

http://127.0.0.1:8000/article/Group%20method%20of%20data%20handling

http://127.0.0.1:8000/article/GSP%20Algorithm

http://127.0.0.1:8000/article/Hamshahri%20Corpus

http://127.0.0.1:8000/article/HAREM

http://127.0.0.1:8000/article/Heaps\’%20law

http://127.0.0.1:8000/article/History%20of%20machine%20translation

http://127.0.0.1:8000/article/Inference%20attack

http://127.0.0.1:8000/article/Information%20extraction

http://127.0.0.1:8000/article/Information%20Harvesting

http://127.0.0.1:8000/article/Institute%20of%20Analytics%20Professionals%

20of%20Australia

http://127.0.0.1:8000/article/Intelligent%20character%20recognition

http://127.0.0.1:8000/article/Interlingual%20machine%20translation

http://127.0.0.1:8000/article/International%20Corpus%20of%20English

http://127.0.0.1:8000/article/International%20Journal%20of%20Corpus%

20Linguistics

http://127.0.0.1:8000/article/IntraText

http://127.0.0.1:8000/article/Jabberwacky

http://127.0.0.1:8000/article/Java%20Machine%20Learning%20Library

http://127.0.0.1:8000/article/John%20Lennon%20Artificial%20Intelligence%

20Project

http://127.0.0.1:8000/article/Julius%20(software)

http://127.0.0.1:8000/article/Kalle%20Kotipsykiatri

http://127.0.0.1:8000/article/Katz\’s%20back-off%20model

http://127.0.0.1:8000/article/Kdd%20Ontology

http://127.0.0.1:8000/article/Keyword%20(linguistics)

http://127.0.0.1:8000/article/K-optimal%20pattern%20discovery

http://127.0.0.1:8000/article/Kultepe%20texts

http://127.0.0.1:8000/article/KXEN%20Inc.

http://127.0.0.1:8000/article/Language%20and%20Computers

http://127.0.0.1:8000/article/Language%20engineering

21



http://127.0.0.1:8000/article/Language%20identification

http://127.0.0.1:8000/article/Language%20model

http://127.0.0.1:8000/article/Language%20recognition

http://127.0.0.1:8000/article/Language%20Technologies%20Institute

http://127.0.0.1:8000/article/Languageware

http://127.0.0.1:8000/article/Language%20Weaver

http://127.0.0.1:8000/article/Larry%20E.%20Smith

http://127.0.0.1:8000/article/Latent%20Dirichlet%20allocation

http://127.0.0.1:8000/article/Latent%20semantic%20analysis

http://127.0.0.1:8000/article/Latent%20semantic%20mapping

http://127.0.0.1:8000/article/Lemmatisation

http://127.0.0.1:8000/article/Lesk%20algorithm

http://127.0.0.1:8000/article/Levenshtein%20automaton

http://127.0.0.1:8000/article/Lexical%20Markup%20Framework

http://127.0.0.1:8000/article/Lift%20(data%20mining)

http://127.0.0.1:8000/article/Linguaphile

http://127.0.0.1:8000/article/LinguaStream

http://127.0.0.1:8000/article/Linguatec

http://127.0.0.1:8000/article/Linguistic%20Data%20Consortium

http://127.0.0.1:8000/article/Linguistic%20Issues%20in%20Language%

20Technology

http://127.0.0.1:8000/article/Linguistic%20Knowledge%20Builder

http://127.0.0.1:8000/article/Linguistics%20Research%20Center%20at%

20UT%20Austin

http://127.0.0.1:8000/article/Link%20grammar

http://127.0.0.1:8000/article/Link%20Grammar%20Parser

http://127.0.0.1:8000/article/List%20of%20chatterbots

http://127.0.0.1:8000/article/List%20of%20research%20laboratories%

20for%20machine%20translation

http://127.0.0.1:8000/article/Logic%20form

http://127.0.0.1:8000/article/LOLITA

http://127.0.0.1:8000/article/LREC

http://127.0.0.1:8000/article/Lbke%20English

http://127.0.0.1:8000/article/Machine-readable%20dictionary

http://127.0.0.1:8000/article/Machine%20translation

http://127.0.0.1:8000/article/Machine%20translation%20software%

20usability

http://127.0.0.1:8000/article/Mari%20Tablets

http://127.0.0.1:8000/article/MBROLA

http://127.0.0.1:8000/article/MDic

http://127.0.0.1:8000/article/MegaHAL

http://127.0.0.1:8000/article/Message%20Understanding%20Conference

http://127.0.0.1:8000/article/METAL%20MT

http://127.0.0.1:8000/article/METEOR

22



http://127.0.0.1:8000/article/METEO%20System

http://127.0.0.1:8000/article/Microsoft%20Anna

http://127.0.0.1:8000/article/Modular%20Audio%20Recognition%20Framework

http://127.0.0.1:8000/article/Molecule%20mining

http://127.0.0.1:8000/article/Morphological%20dictionary

http://127.0.0.1:8000/article/Morphological%20pattern

http://127.0.0.1:8000/article/Moses%20(machine%20translation)

http://127.0.0.1:8000/article/Multi-document%20summarization

http://127.0.0.1:8000/article/Multilingual%20notation

http://127.0.0.1:8000/article/Named%20entity%20recognition

http://127.0.0.1:8000/article/National%20Centre%20for%20Text%20Mining

http://127.0.0.1:8000/article/Natural%20computation

http://127.0.0.1:8000/article/Natural%20language

http://127.0.0.1:8000/article/Natural%20language%20generation

http://127.0.0.1:8000/article/Natural%20language%20processing

http://127.0.0.1:8000/article/Nearest%20neighbor%20search

http://127.0.0.1:8000/article/Neo-Assyrian%20Text%20Corpus%20Project

http://127.0.0.1:8000/article/Neural%20network

http://127.0.0.1:8000/article/N-gram

http://127.0.0.1:8000/article/NIST%20(metric)

http://127.0.0.1:8000/article/Noisy%20channel%20model

http://127.0.0.1:8000/article/Noisy%20text%20analytics

http://127.0.0.1:8000/article/Nora%20(technology)

http://127.0.0.1:8000/article/North%20American%20Association%20for%

20Computational%20Linguistics

http://127.0.0.1:8000/article/Ontology%20learning

http://127.0.0.1:8000/article/Open%20domain

http://127.0.0.1:8000/article/OpenLogos

http://127.0.0.1:8000/article/Open%20Source%20Intelligence

http://127.0.0.1:8000/article/Open%20Translation%20Engine

http://127.0.0.1:8000/article/Optical%20character%20recognition

http://127.0.0.1:8000/article/Optimal%20matching

http://127.0.0.1:8000/article/Overfitting

http://127.0.0.1:8000/article/Oxford%20English%20Corpus

http://127.0.0.1:8000/article/Paco%20Nathan

http://127.0.0.1:8000/article/PARRY

http://127.0.0.1:8000/article/Part-of-speech%20tagging

http://127.0.0.1:8000/article/PATR-II

http://127.0.0.1:8000/article/Pattern%20mining

http://127.0.0.1:8000/article/Phrasal%20template

http://127.0.0.1:8000/article/Phrase%20chunking

http://127.0.0.1:8000/article/Phraselator

http://127.0.0.1:8000/article/Praat

http://127.0.0.1:8000/article/Principal%20components%20analysis

23



http://127.0.0.1:8000/article/Probabilistic%20latent%20semantic%

20analysis

http://127.0.0.1:8000/article/Production%20(computer%20science)

http://127.0.0.1:8000/article/Promt

http://127.0.0.1:8000/article/PropBank

http://127.0.0.1:8000/article/Prospero%20Business%20Suite

http://127.0.0.1:8000/article/Q-systems

http://127.0.0.1:8000/article/Quack.com

http://127.0.0.1:8000/article/Question%20answering

http://127.0.0.1:8000/article/Racter

http://127.0.0.1:8000/article/RapidMiner

http://127.0.0.1:8000/article/Receiver%20operating%20characteristic

http://127.0.0.1:8000/article/Recursive%20transition%20network

http://127.0.0.1:8000/article/Relationship%20extraction

http://127.0.0.1:8000/article/Rewrite%20rule

http://127.0.0.1:8000/article/Robby%20Garner

http://127.0.0.1:8000/article/Round-trip%20translation

http://127.0.0.1:8000/article/Russian%20National%20Corpus

http://127.0.0.1:8000/article/SABLE

http://127.0.0.1:8000/article/SALERO

http://127.0.0.1:8000/article/Scottish%20Corpus%20of%20Texts%20and%

20Speech

http://127.0.0.1:8000/article/Scriptella

http://127.0.0.1:8000/article/Semantic%20analytics

http://127.0.0.1:8000/article/Semantic%20neural%20network

http://127.0.0.1:8000/article/Semantic%20prosody

http://127.0.0.1:8000/article/Semantic%20relatedness

http://127.0.0.1:8000/article/Semantic%20similarity

http://127.0.0.1:8000/article/Sentence%20boundary%20disambiguation

http://127.0.0.1:8000/article/Sentence%20extraction

http://127.0.0.1:8000/article/Shallow%20parsing

http://127.0.0.1:8000/article/Sinewave%20synthesis

http://127.0.0.1:8000/article/Sinkov%20statistic

http://127.0.0.1:8000/article/Sliding%20window%20based%20part-of-speech%

20tagging

http://127.0.0.1:8000/article/SmarterChild

http://127.0.0.1:8000/article/Snack%20audio%20library

http://127.0.0.1:8000/article/Snikers

http://127.0.0.1:8000/article/Software%20mining

http://127.0.0.1:8000/article/Soundex

http://127.0.0.1:8000/article/Speech%20corpus

http://127.0.0.1:8000/article/Speech%20recognition

http://127.0.0.1:8000/article/Speech%20segmentation

http://127.0.0.1:8000/article/Speech%20synthesis

24



http://127.0.0.1:8000/article/Spleak

http://127.0.0.1:8000/article/SPL%20notation

http://127.0.0.1:8000/article/Spoken%20dialog%20system

http://127.0.0.1:8000/article/StarDict

http://127.0.0.1:8000/article/Statistical%20machine%20translation

http://127.0.0.1:8000/article/Statistical%20parsing

http://127.0.0.1:8000/article/Statistical%20semantics

http://127.0.0.1:8000/article/Stefan%20Th.%20Gries

http://127.0.0.1:8000/article/Stemming

http://127.0.0.1:8000/article/Stochastic%20context-free%20grammar

http://127.0.0.1:8000/article/Stochastic%20grammar

http://127.0.0.1:8000/article/Structure%20mining

http://127.0.0.1:8000/article/Studies%20in%20NLP

http://127.0.0.1:8000/article/Subvocal%20recognition

http://127.0.0.1:8000/article/Sukhotins%20Algorithm

http://127.0.0.1:8000/article/Survey%20of%20English%20Usage

http://127.0.0.1:8000/article/Syllabotactics

http://127.0.0.1:8000/article/Synthetix

http://127.0.0.1:8000/article/SYSTRAN

http://127.0.0.1:8000/article/Talkman

http://127.0.0.1:8000/article/Targumatik

http://127.0.0.1:8000/article/TAUM%20system

http://127.0.0.1:8000/article/Technolangue/Easy

http://127.0.0.1:8000/article/Teragram%20Corporation

http://127.0.0.1:8000/article/Terminology%20extraction

http://127.0.0.1:8000/article/Text%20analytics

http://127.0.0.1:8000/article/Text%20corpus

http://127.0.0.1:8000/article/Text%20mining

http://127.0.0.1:8000/article/Text%20Retrieval%20Conference

http://127.0.0.1:8000/article/Text%20segmentation

http://127.0.0.1:8000/article/Text%20simplification

http://127.0.0.1:8000/article/Tfidf

http://127.0.0.1:8000/article/Thesaurus%20Linguae%20Graecae

http://127.0.0.1:8000/article/TIMIT

http://127.0.0.1:8000/article/Traduwiki

http://127.0.0.1:8000/article/Transcriber

http://127.0.0.1:8000/article/Transderivational%20search

http://127.0.0.1:8000/article/Transfer-based%20machine%20translation

http://127.0.0.1:8000/article/Treatment%20learner

http://127.0.0.1:8000/article/Treebank

http://127.0.0.1:8000/article/Trigram

http://127.0.0.1:8000/article/Trigram%20tagger

http://127.0.0.1:8000/article/Ultra%20Hal%20Assistant

http://127.0.0.1:8000/article/United%20Nations%20Multilingual%20Terminology%

25



20Database

http://127.0.0.1:8000/article/Universal%20Networking%20Language

http://127.0.0.1:8000/article/User:Stevenbird/List%20of%20NLP%20Courses

http://127.0.0.1:8000/article/Variable%20rules%20analysis

http://127.0.0.1:8000/article/VerbAce

http://127.0.0.1:8000/article/Verbmobil

http://127.0.0.1:8000/article/VerbNet

http://127.0.0.1:8000/article/Verbot

http://127.0.0.1:8000/article/Virtual%20Woman

http://127.0.0.1:8000/article/Voice%20activity%20detection

http://127.0.0.1:8000/article/Voice%20output%20communication%20aid

http://127.0.0.1:8000/article/VoxForge

http://127.0.0.1:8000/article/WaveSurfer

http://127.0.0.1:8000/article/Weather%20Data%20Mining

http://127.0.0.1:8000/article/Webclopedia

http://127.0.0.1:8000/article/Web%20mining

http://127.0.0.1:8000/article/Weidner%20Communications

http://127.0.0.1:8000/article/Weka%20(machine%20learning)

http://127.0.0.1:8000/article/Windows%20Live%20Translator

http://127.0.0.1:8000/article/Wordfast

http://127.0.0.1:8000/article/WordNet

http://127.0.0.1:8000/article/Word%20sense%20disambiguation

http://127.0.0.1:8000/article/Wrapper%20(data%20mining)

http://127.0.0.1:8000/article/Writer%20invariant

http://127.0.0.1:8000/article/W-shingling

http://127.0.0.1:8000/article/Zeta%20distribution

http://127.0.0.1:8000/article/ZipfMandelbrot%20law

http://127.0.0.1:8000/article/Zipf\’s%20law

B.2 Number of Links

The number of links in the seed articles (see section B.1), derived by the
Python script linkextractor.py.

Usage: python linkextractor.py seedArticles > seedArticles.links

(’/article/Natural_language_processing/’,84)

(’/article/Machine_translation/’,73)

(’/article/Data_mining/’,53)

(’/article/Computational_linguistics/’,47)

(’/article/Speech_recognition/’,43)

(’/article/English_language/’,36)

(’/article/Machine_learning/’,35)

26



(’/article/Artificial_intelligence/’,34)

(’/article/Text_corpus/’,32)

(’/article/Information_retrieval/’,30)

(’/article/Natural_language/’,29)

(’/article/XML/’,28)

(’/article/Linguistics/’,25)

(’/article/Corpus_linguistics/’,25)

(’/article/Proprietary/’,24)

(’/article/Chatterbot/’,23)

(’/article/HTML/’,22)

(’/article/Text_mining/’,21)

(’/article/Statistical_machine_translation/’,21)

(’/article/Database/’,21)

(’/article/Statistics/’,20)

(’/article/N-gram/’,20)

(’/article/Information_extraction/’,20)

(’/article/Syntax/’,19)

(’/article/Speech_synthesis/’,19)

(’/article/Part-of-speech_tagging/’,18)

(’/article/Java_%28programming_language%29/’,18)

(’/article/2005/’,18)

(’/article/Russian_language/’,17)

(’/article/WordNet/’,16)

(’/article/Translation_memory/’,16)

(’/article/Parsing/’,16)

(’/article/French_language/’,16)

(’/article/Translation/’,15)

(’/article/Grammar/’,15)

(’/article/Spanish_language/’,14)

(’/article/IBM/’,14)

(’/article/GNU_General_Public_License/’,14)

(’/article/Algorithm/’,14)

(’/article/Web_application/’,13)

(’/article/Semantics/’,13)

(’/article/SYSTRAN/’,13)

(’/article/Ontology_%28computer_science%29/’,13)

(’/article/Natural_Language_Processing/’,13)

(’/article/Loebner_Prize/’,13)

(’/article/Google/’,13)

(’/article/Artificial_neural_network/’,13)

(’/article/OpenOffice.org/’,12)

(’/article/Multiplatform/’,12)

(’/article/Latent_semantic_analysis/’,12)

(’/article/Language/’,12)

27



(’/article/German_language/’,12)

(’/article/ELIZA/’,12)

(’/article/Babel_Fish_%28website%29/’,12)

(’/article/Morphology_%28linguistics%29/’,11)

(’/article/Microsoft_Windows/’,11)

(’/article/Metadata/’,11)

(’/article/Word/’,10)

(’/article/Systran/’,10)

(’/article/Software/’,10)

(’/article/Sentence_%28linguistics%29/’,10)

(’/article/Portuguese_language/’,10)

(’/article/Pattern_recognition/’,10)

(’/article/Noun/’,10)

(’/article/Named_entity_recognition/’,10)

(’/article/Hidden_Markov_model/’,10)

(’/article/Google_Translate/’,10)

(’/article/Freeware/’,10)

(’/article/Free_software/’,10)

(’/article/Data_set/’,10)

(’/article/Data/’,10)

(’/article/Cross-platform/’,10)

(’/article/Word_sense_disambiguation/’,9)

(’/article/WordPerfect/’,9)

(’/article/United_States/’,9)

(’/article/Turing_test/’,9)

(’/article/Text-to-speech/’,9)

(’/article/Statistical_classification/’,9)

(’/article/Search_engine/’,9)

(’/article/Predictive_analytics/’,9)

(’/article/Phrase/’,9)

(’/article/Linux/’,9)

(’/article/Information_theory/’,9)

(’/article/Data_clustering/’,9)

(’/article/Computer_program/’,9)

(’/article/British_National_Corpus/’,9)

(’/article/Artificial_Linguistic_Internet_Computer_Entity/’,9)

(’/article/XHTML/’,8)

(’/article/Verb/’,8)

(’/article/Text_analytics/’,8)

(’/article/RapidMiner/’,8)

(’/article/Part_of_speech/’,8)

(’/article/Neural_network/’,8)

(’/article/Loebner_prize/’,8)

(’/article/List_of_Chatterbots/’,8)

28



(’/article/Language_model/’,8)

(’/article/Japanese_language/’,8)

(’/article/Italian_language/’,8)

(’/article/Information/’,8)

(’/article/Formal_grammar/’,8)

(’/article/Esperanto/’,8)

(’/article/Data_analysis/’,8)

(’/article/Corpus/’,8)

(’/article/Computer_science/’,8)

(’/article/Business_intelligence/’,8)

(’/article/Bioinformatics/’,8)

(’/article/BLEU/’,8)

(’/article/Association_for_Computational_Linguistics/’,8)

(’/article/Ambiguity/’,8)

(’/article/2006/’,8)

B.3 Remaining articles in the corpus

The stored articles, using the Python script makecorpus.py.

Usage: python makecorpus.py seedArticles.links

001.Algorithm.source
002.Ambiguity.source
003.Artificial intelligence.source
004.Artificial Linguistic Internet Computer Entity.source
005.Artificial neural network.source
006.Association for Computational Linguistics.source
007.Babel Fish (website).source
008.Bioinformatics.source
009.BLEU.source
010.Business intelligence.source
011.Chatterbot.source
012.Computational linguistics.source
013.Computer program.source
014.Computer science.source
015.Corpus linguistics.source
016.Cross-platform.source
017.Data.source
018.Data analysis.source
019.Database.source
020.Cluster analysis.source
021.Data mining.source

29



022.Data set.source
023.ELIZA.source
024.English language.source
025.Esperanto.source
026.Formal grammar.source
027.Free software.source
028.Freeware.source
029.French language.source
030.German language.source
031.GNU General Public License.source
032.Google.source
033.Google Translate.source
034.Grammar.source
035.Hidden Markov model.source
036.HTML.source
037.IBM.source
038.Information.source
039.Information extraction.source
040.Information retrieval.source
041.Information theory.source
042.Italian language.source
043.Japanese language.source
044.Java (programming language).source
045.Language.source
046.Language model.source
047.Latent semantic analysis.source
048.Linguistics.source
049.Linux.source
050.List of chatterbots.source
051.Loebner prize.source
052.Machine learning.source
053.Machine translation.source
054.Metadata.source
055.Microsoft Windows.source
056.Morphology (linguistics).source
057.Named entity recognition.source
058.Natural language.source
059.Natural language processing.source
060.Neural network.source
061.N-gram.source
062.Noun.source
063.Ontology (information science).source
064.OpenOffice.org.source
065.Parsing.source

30



066.Lexical category.source
067.Part-of-speech tagging.source
068.Pattern recognition.source
069.Phrase.source
070.Portuguese language.source
071.Predictive analytics.source
072.RapidMiner.source
073.Russian language.source
074.Web search engine.source
075.Semantics.source
076.Sentence (linguistics).source
077.Computer software.source
078.Spanish language.source
079.Speech recognition.source
080.Speech synthesis.source
081.Statistical classification.source
082.Statistical machine translation.source
083.Statistics.source
084.Syntax.source
085.SYSTRAN.source
086.Text analytics.source
087.Text corpus.source
088.Text mining.source
089.Translation.source
090.Translation memory.source
091.Turing test.source
092.United States.source
093.Verb.source
094.Web application.source
095.Word.source
096.WordNet.source
097.WordPerfect.source
098.Word sense disambiguation.source
099.XHTML.source
100.XML.source

31



C Alternative Link Analysis Cycle

It seems the naming convention in Wikipedia Source Markup suffer from two
major inconsistency issues: The usage of camel case (“Word Processor”)
rather than capitalizing only the first letter (“Word processor”) and the
use of whitespace/underscore between two words (“Artificial intelligence”
and ”Artificial intelligence“). I have made an improved version of link

extractor that compensates for this inconsistency in the naming convention
of articles by counting the pages that are being redirected to. Had I used
this improvised link analysis, the article selection would have differed to
some extent, but only for the “least relevant” articles, e.g. the articles with
the fewest references.

By using this new link analysis, I extracted the 112 most frequent article
references from the seed articles, and compared against the original 110
articles used by the WeScience Corpus. Of the 110 articles that were used
by WeScience, there were only 9 articles that were not among the 112 articles
extracted by the improved link analyzer7.

Of the 112 articles extracted by the new link extraction cycle, there
were 17 articles with 9 references or more that were not among the original
selection in WeScience. 10 of these articles had the minimum of 9 references,
and it should be noted that not all 110 articles in the original selection are
unique, i.e. some of the links refer to the same article (like Cross-platform
and Multiplatform), and if we actually were to use the improved link analyzer
to extract article candidates, we could not have included all articles with 9
references, but would probably have set the threshold to 10.

We did however decide to stick to the original selection, instead of scrap-
ing the initial work and start over with a new selection. When dealing
with 18 GB of user-generated data, compensating for inconsistencies in the
dataset seems like a never-ending task, and we have therefore decided that
our original selection is acceptable, and there would be little to gain from
starting over again. To truly compensate for the all inconsistencies in the
dataset does not seem feasible. Even in the alternative version of counting
redirects, we detected inconsistencies with respect to the naming conven-
tion, e.g. will the the entry “AI” redirect to the page “Artificial intelli-
gence”, whereas the page “Artificial Intelligence” will redirect to the page
“Artificial intelligence” (with underscore).

C.1 How It Was Carried Out

By using an alternative version of link extractor, I retrieved a selection
which differ slightly from the original WeScience selection listed in Section
B.2.

7These articles were: Data analysis, Esperanto, Information, Italian language,
Japanese language, RapidMiner, Word and XHTML

32



When using this new script, we first have to generate a Python dictionary
where the redirects if the original Wikipedia dump is stored. This is done
in two stages. First we retrieve all the redirects by using a grep command:

egrep -B 20 -i ’#redirect’ enwiki-latest-pages-articles.xml |

egrep -i ’<title>|#redirect’ > redirect.txt

redirect.txt now contains all redirects in the Wikipedia dump. We parse
redirect.txt with linkDict.py to retrieve a Python dictionary that maps
all the article names to the redirect link, e.g. so that both “Part-of-speech”
and “Part of Speech” now will have the same hash key (namely “Lexical
category”).

C.2 Article Frequency in Alternative Link Extraction

Usage:8

1. cat redirect.txt | python linkDict.py

2. python linkextractor.newapproach.py seedArticles > seedArticles.links

(’natural language processing’, 97)
(’machine translation’, 83)
(’data mining’, 53)
(’computational linguistics’, 52)
(’speech recognition’, 51)
(’english language’, 39)
(’machine learning’, 37)
(’artificial intelligence’, 37)
(’2005’, 36)
(’speech synthesis’, 35)
(’text corpus’, 34)
(’natural language’, 33)
(’information retrieval’, 31)
(’statistics’, 30)
(’linguistics’, 30)
(’xml’, 29)
(’cross-platform’, 28)
(’chatterbot’, 26)
(’proprietary’, 25)
(’n-gram’, 25)
(’database’, 25)
(’systran’, 24)

8linkDict.py and linkextractor.newapproach.py can be made available upon re-
quest.

33



(’syntax’, 24)
(’corpus linguistics’, 24)
(’translation’, 23)
(’parsing’, 23)
(’gnu general public license’, 23)
(’text mining’, 22)
(’java (programming language)’, 22)
(’html’, 22)
(’statistical machine translation’, 21)
(’loebner prize’, 20)
(’information extraction’, 20)
(’wordnet’, 19)
(’semantics’, 19)
(’part-of-speech tagging’, 19)
(’2006’, 19)
(’russian language’, 18)
(’grammar’, 18)
(’translation memory’, 17)
(’computer software’, 17)
(’microsoft windows’, 16)
(’french language’, 16)
(’algorithm’, 16)
(’spanish language’, 15)
(’latent semantic analysis’, 15)
(’eigenvalue, eigenvector and eigenspace’, 15)
(’united states’, 14)
(’lexical category’, 14)
(’ibm’, 14)
(’google’, 14)
(’eliza’, 14)
(’bleu’, 14)
(’artificial neural network’, 14)
(’web search engine’, 13)
(’web application’, 13)
(’synonym’, 13)
(’named entity recognition’, 13)
(’linux’, 13)
(’language’, 13)
(’corpus’, 13)
(’babel fish (website)’, 13)
(’openoffice.org’, 12)
(’hidden markov model’, 12)
(’german language’, 12)
(’word sense disambiguation’, 11)

34



(’turing test’, 11)
(’morphology (linguistics)’, 11)
(’metadata’, 11)
(’list of chatterbots’, 11)
(’freeware’, 11)
(’free software’, 11)
(’cluster analysis’, 11)
(”zipf’s law”, 10)
(’yahoo!’, 10)
(’wordperfect’, 10)
(’word processor’, 10)
(’word (disambiguation)’, 10)
(’statistical classification’, 10)
(’speech application programming interface’, 10)
(’sentence (linguistics)’, 10)
(’predictive analytics’, 10)
(’portuguese language’, 10)
(’pattern recognition’, 10)
(’noun’, 10)
(’language model’, 10)
(’google translate’, 10)
(’data set’, 10)
(’data’, 10)
(’comparison of machine translation applications’, 10)
(’business intelligence’, 10)
(’verb’, 9)
(’phrase’, 9)
(’optical character recognition’, 9)
(’open source’, 9)
(’ontology (information science)’, 9)
(’microsoft word’, 9)
(’medline’, 9)
(’list of google products’, 9)
(’information theory’, 9)
(’finite state machine’, 9)
(’document classification’, 9)
(’computer-assisted translation’, 9)
(’computer science’, 9)
(’computer program’, 9)
(’computer’, 9)
(’carnegie mellon university’, 9)
(’british national corpus’, 9)
(’bioinformatics’, 9)
(’association for computational linguistics’, 9)

35



(’artificial linguistic internet computer entity’, 9)
(’ambiguity’, 9)

C.3 New Articles in the Alternative Cycle

The top 112 articles retrived by the alternative link extractor. The articles
with a “–” prefix is not a part of the original WeScience selection.

+(’2005’, 36)
+(’2006’, 19)
+(’algorithm’, 16)
+(’ambiguity’, 9)
+(’artificial intelligence’, 37)
+(’artificial linguistic internet computer entity’, 9)
+(’artificial neural network’, 14)
+(’association for computational linguistics’, 9)
+(’babel fish (website)’, 13)
+(’bioinformatics’, 9)
+(’bleu’, 14)
+(’british national corpus’, 9)
+(’business intelligence’, 10)
–(’carnegie mellon university’, 9)
+(’chatterbot’, 26)
+(’cluster analysis’, 11)
–(’comparison of machine translation applications’, 10)
+(’computational linguistics’, 52)
–(’computer’, 9)
–(’computer-assisted translation’, 9)
+(’computer program’, 9)
+(’computer science’, 9)
+(’computer software’, 17)
+(’corpus’, 13)
+(’corpus linguistics’, 24)
+(’cross-platform’, 28)
+(’data’, 10)
+(’database’, 25)
+(’data mining’, 53)
+(’data set’, 10)
–(’document classification’, 9)
–(’eigenvalue, eigenvector and eigenspace’, 15)
+(’eliza’, 14)
+(’english language’, 39)
–(’finite state machine’, 9)

36



+(’free software’, 11)
+(’freeware’, 11)
+(’french language’, 16)
+(’german language’, 12)
+(’gnu general public license’, 23)
+(’google’, 14)
+(’google translate’, 10)
+(’grammar’, 18)
+(’hidden markov model’, 12)
+(’html’, 22)
+(’ibm’, 14)
+(’information extraction’, 20)
+(’information retrieval’, 31)
+(’information theory’, 9)
+(’java (programming language)’, 22)
+(’language’, 13)
+(’language model’, 10)
+(’latent semantic analysis’, 15)
+(’lexical category’, 14)
+(’linguistics’, 30)
+(’linux’, 13)
+(’list of chatterbots’, 11)
–(’list of google products’, 9)
+(’loebner prize’, 20)
+(’machine learning’, 37)
+(’machine translation’, 83)
–(’medline’, 9)
+(’metadata’, 11)
+(’microsoft windows’, 16)
–(’microsoft word’, 9)
+(’morphology (linguistics)’, 11)
+(’named entity recognition’, 13)
+(’natural language’, 33)
+(’natural language processing’, 97)
+(’n-gram’, 25)
+(’noun’, 10)
+(’ontology (information science)’, 9)
+(’openoffice.org’, 12)
–(’open source’, 9)
–(’optical character recognition’, 9)
+(’parsing’, 23)
+(’part-of-speech tagging’, 19)
+(’pattern recognition’, 10)
+(’phrase’, 9)

37



+(’portuguese language’, 10)
+(’predictive analytics’, 10)
+(’proprietary’, 25)
+(’russian language’, 18)
+(’semantics’, 19)
+(’sentence (linguistics)’, 10)
+(’spanish language’, 15)
–(’speech application programming interface’, 10)
(+’speech recognition’, 51)
(+’speech synthesis’, 35)
(+’statistical classification’, 10)
+(’statistical machine translation’, 21)
+(’statistics’, 30)
–(’synonym’, 13)
+(’syntax’, 24)
+(’systran’, 24)
+(’text corpus’, 34)
+(’text mining’, 22)
+(’translation’, 23)
+(’translation memory’, 17)
+(’turing test’, 11)
+(’united states’, 14)
+(’verb’, 9)
+(’web application’, 13)
+(’web search engine’, 13)
+(’word (disambiguation)’, 10)
+(’wordnet’, 19)
+(’wordperfect’, 10)
–(’word processor’, 10)
+(’word sense disambiguation’, 11)
+(’xml’, 29)
–(’yahoo!’, 10)
–(”zipf’s law”, 10)

C.4 Articles in the Original WeScience Selection

Articles with a ++ prefix did not occur in the alternative article selection
cycle.

38



(’2005/’, 18)
(’2006/’, 8)
(’Algorithm/’, 14)
(’Ambiguity/’, 8)
(’Artificial intelligence/’, 34)
(’Artificial Linguistic Internet Computer Entity/’, 9)
(’Artificial neural network/’, 13)
(’Association for Computational Linguistics/’, 8)
(’Babel Fish *(’Bioinformatics/’, 8)
(’BLEU/’, 8)
(’British National Corpus/’, 9)
(’Business intelligence/’, 8)
(’Chatterbot/’, 23)
(’Computational linguistics/’, 47)
(’Computer program/’, 9)
(’Computer science/’, 8)
(’Corpus/’, 8)
(’Corpus linguistics/’, 25)
(’Cross-platform/’, 10)
(’Data/’, 10)
++(’Data analysis/’, 8)
(’Database/’, 21)
(cluster analysis)(’Data clustering/’, 9)
(’Data mining/’, 53)
(’Data set/’, 10)
(’ELIZA/’, 12)
(’English language/’, 36)
++(’Esperanto/’, 8)
++(’Formal grammar/’, 8)
(’Free software/’, 10)
(’Freeware/’, 10)
(’French language/’, 16)
(’German language/’, 12)
(’GNU General Public License/’, 14)
(’Google/’, 13)
(’Google Translate/’, 10)
(’Grammar/’, 15)
(’Hidden Markov model/’, 10)
(’HTML/’, 22)
(’IBM/’, 14)

39



++(’Information/’, 8)
(’Information extraction/’, 20)
(’Information retrieval/’, 30)
(’Information theory/’, 9)
++(’Italian language/’, 8)
++(’Japanese language/’, 8)
(’Java %28programming language%29/’, 18)
(’Language/’, 12)
(’Language model/’, 8)
(’Latent semantic analysis/’, 12)
(’Linguistics/’, 25)
(’Linux/’, 9)
(’List of Chatterbots/’, 8)
(’Loebner Prize/’, 13)
(’Loebner prize/’, 8)
(’Machine learning/’, 35)
(’Machine translation/’, 73)
(’Metadata/’, 11)
(’Microsoft Windows/’, 11)
(’Morphology *(cross-platform)(’Multiplatform/’, 12)
(’Named entity recognition/’, 10)
(’Natural language/’, 29)
(’Natural Language Processing/’, 13)
(’Natural language processing/’, 84)
(artificial)(’Neural network/’, 8)
(’N-gram/’, 20)
(’Noun/’, 10)
(’Ontology %28computer science%29/’, 13)
(’OpenOffice.org/’, 12)
(’Parsing/’, 16)
(’Part of speech/’, 8)
(’Part-of-speech tagging/’, 18)
(’Pattern recognition/’, 10)
(’Phrase/’, 9)
(’Portuguese language/’, 10)
(’Predictive analytics/’, 9)
(’Proprietary/’, 24)

40



++(’RapidMiner/’, 8)
(’Russian language/’, 17)
(web)(’Search engine/’, 9)
(’Semantics/’, 13)
(’Sentence %28linguistics%29/’, 10)
(’Software/’, 10)
(’Spanish language/’, 14)
(’Speech recognition/’, 43)
(’Speech synthesis/’, 19)
(’Statistical classification/’, 9)
(’Statistical machine translation/’, 21)
(’Statistics/’, 20)
(’Syntax/’, 19)
(’Systran/’, 10)
(’SYSTRAN/’, 13)
(text mining)(’Text analytics/’, 8)
(’Text corpus/’, 32)
(’Text mining/’, 21)
(speech synt)(’Text-to-speech/’, 9)
(’Translation/’, 15)
(’Translation memory/’, 16)
(’Turing test/’, 9)
(’United States/’, 9)
(’Verb/’, 8)
(’Web application/’, 13)
++(’Word/’, 10)
(’WordNet/’, 16)
(’WordPerfect/’, 9)
(’Word sense disambiguation/’, 9)
++(’XHTML/’, 8)
(’XML/’, 28)

41


